Plant-derived protein sources are the most relevant substitutes for fishmeal in aquafeeds. Nevertheless, the effects of plant based diets on the intestinal microbiome especially of juvenile Rainbow trout (Oncorhynchus mykiss) are yet to be fully investigated. The present study demonstrates, based on 16S rDNA bacterial community profiling, that the intestinal microbiome of juvenile Rainbow trout is strongly affected by dietary plant protein inclusion levels. After first feeding of juveniles with either 0%, 50% or 97% of total dietary protein content derived from plants, statistically significant differences of the bacterial gut community for the three diet-types were detected, both at phylum and order level. The microbiome of juvenile fish consisted mainly of the phyla Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria, and thus fits the salmonid core microbiome suggested in previous studies. Dietary plant proteins significantly enhanced the relative abundance of the orders Lactobacillales, Bacillales and Pseudomonadales. Animal proteins in contrast significantly promoted Bacteroidales, Clostridiales, Vibrionales, Fusobacteriales and Alteromonadales. The overall alpha diversity significantly decreased with increasing plant protein inclusion levels and with age of experimental animals. In order to investigate permanent effects of the first feeding diet-type on the early development of the microbiome, a diet change was included in the study after 54 days, but no such effects could be detected. Instead, the microbiome of juvenile trout fry was highly dependent on the actual diet fed at the time of sampling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428975 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177735 | PLOS |
Aquac Nutr
January 2025
School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama 36849, USA.
Biofloc technology is an aquaculture production system that has gained popularity with tilapia production. Probiotics provide benefits for the host and/or aquatic environments by both regulating and modulating microbial communities and their metabolites. When a probiotic feed is combined with a biofloc system, the production amount may be improved through better fish growth, disease resistance, and/or improved water quality by reducing organic matter and stabilizing metrics such as pH and components of the nitrogen cycle.
View Article and Find Full Text PDFJ Therm Biol
January 2025
Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China. Electronic address:
The traditional overwintering process of sea cucumbers (Apostichopus japonicus) requires burning a large amount of coal to raise the water temperature. It is useful but costly and not environmentally friendly. Bacillus is proposed as a cheap and green alternative.
View Article and Find Full Text PDFIntegr Zool
January 2025
Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China.
Over the past few decades, ocean hypoxia has been increasing due to human activities. Hypoxic stress, characterized by a reduced level of dissolved oxygen, is an escalating threat to marine ecosystems, with potentially devastating effects on the viability of endangered species such as the tri-spine horseshoe crab Tachypleus tridentatus. Even though this species is remarkably resilient to low oxygen levels, persistent hypoxia can negatively impact its population's survivability.
View Article and Find Full Text PDFBMC Microbiol
January 2025
The Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
Background: The observed growth variability of different aquaculture species in captivity hinders its large-scale production. For the sandfish Holothuria scabra, a tropical sea cucumber species, there is a scarcity of information on its intestinal microbiota in relation to host growth, which could provide insights into the processes that affect growth and identify microorganisms with probiotic or biochemical potential that could improve current production strategies. To address this gap, this study used 16 S rRNA amplicon sequencing to characterize differences in gut and fecal microbiota among large and small juveniles reared in floating ocean nurseries.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:
Seaweed residue hydrolysate (SRH), produced by the acid hydrolysis of seaweed processing residues, is rich in bioactive compounds. The development and utilization of SRH as an aquatic immune enhancer not only achieves high-value utilization of waste but also promotes green and healthy aquaculture. In this study, northern snakehead (Channa argus) juveniles fed a compound feed supplemented with SRH (treatment group) exhibited a significant enhancement in intestinal microbial diversity and the proliferation of beneficial bacteria after eight weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!