The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus complements recent work on elastic rope coiling and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.178001 | DOI Listing |
Acta Otorhinolaryngol Ital
December 2024
Orthodontics and Pediatric Dentistry Unit, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
Osteochondroma (OC) is a common bone tumour that rarely affects the mandibular condylar process. This pathology can show typical clinical features, such as facial asymmetry, deviation of the chin and dental inferior midline, changes in condylar morphology and malocclusion with an increased posterior mandibular vertical height. The management of condylar OC is a debated topic among surgeons.
View Article and Find Full Text PDFInsect Sci
January 2025
Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany.
Water striders inhabit the elastic surface tension film of water, sharing their environment with other aquatic organisms. Their survival relies heavily on swift maneuverability and navigation around floating obstacles, which aids in the exploration of their habitat and in escaping from potential threats. Their high agility is strongly based on the ability to execute precise turns, enabling effective directional control.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
Nat Commun
January 2025
Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
Tissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding.
View Article and Find Full Text PDFCirc Res
January 2025
Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.).
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!