Recent studies show that dense dopamine (DA) innervation from the ventral tegmental area to the olfactory tubercle (OT) may play an important role in processing multisensory information pertaining to arousal and reward, yet little is known about DA regulation in the OT. This is mainly due to the anatomical limitations of conventional methods of determining DA dynamics in small heterogeneous OT subregions located in the ventral most part of the brain. Additionally, there is increasing awareness that anteromedial and anterolateral subregions of the OT have distinct functional roles in natural and psychostimulant drug reinforcement as well as in regulating other types of behavioral responses, such as aversion. Here, we compared extracellular DA regulation (release and clearance) in three subregions (anteromedial, anterolateral, and posterior) of the OT of urethane-anesthetized rats, using in vivo fast-scan cyclic voltammetry following electrical stimulation of ventral tegmental area dopaminergic cell bodies. The neurochemical, anatomical, and pharmacological evidence confirmed that the major electrically evoked catecholamine in the OT was DA across both its anteroposterior and mediolateral extent. While both D2 autoreceptors and DA transporters play important roles in regulating DA evoked in OT subregions, DA in the anterolateral OT was regulated less by the D2 receptors when compared to other OT subregions. Comparing previous data from other DA rich ventral striatum regions, the slow DA clearance across the OT subregions may lead to a high extracellular DA concentration and contribute towards volume transmission. These differences in DA regulation in the terminals of OT subregions and other limbic structures will help us understand the neural regulatory mechanisms of DA in the OT, which may elucidate its distinct functional contribution in the ventral striatum towards mediating aversion, reward and addiction processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849378 | PMC |
http://dx.doi.org/10.1111/jnc.14069 | DOI Listing |
Background: Alzheimer's disease (AD) is a neurodegenerative disorder without a cure. Targeting this multifactorial disease by repurposing FDA approved drugs serves as a faster mode of treatment due to its pre-established human safety. We tested terazosin (TZ), an a-1 adrenergic receptor (AR) antagonist and phosphoglycerate kinase-1 (PGK1) activator as having potential to treat AD.
View Article and Find Full Text PDFExp Anim
January 2025
Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia.
Status epilepticus is linked to cognitive decline due to damage to the hippocampus, a key structure involved in cognition. The hippocampus's high vulnerability to epilepsy-related damage is the main reason for this impairment. Convulsive seizures, such as those observed in status epilepticus, can cause various hippocampal pathologies, including inflammation, abnormal neurogenesis, and neuronal death.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
January 2025
Department of AIDS Research, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China.
Acquired immune deficiency syndrome caused by human immunodeficiency virus (HIV) is a serious infectious disease because of its' high genetic variability. Nowadays, homosexual contact has become the most predominant transmission route in Hebei province, China, leading to the emergence of novel HIV-1 recombinant forms. The neighbor-joining (N-J) phylogenetic trees were constructed using MEGA 6.
View Article and Find Full Text PDFGait Posture
December 2024
Internal Medicine Research Unit, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Hospital Italiano de Buenos Aires, Argentina.
Background: Hallux valgus (HV) is the most prevalent foot condition, associated with a decline in quality of life and a high rate of complications. Pedobarography can be a diagnostic tool, although controversies exist due to differences in measurement scales, type of capture, software, and hardware used. Deformity level differences have not been thoroughly explored.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, 999077, China.
Mass spectrometry imaging (MSI) provides valuable insights into metabolic heterogeneity by capturing in situ molecular profiles within organisms. One challenge of MSI heterogeneity analysis is performing an objective segmentation to differentiate the biological tissue into distinct regions with unique characteristics. However, current methods struggle due to the insufficient incorporation of biological context and high computational demand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!