This Review summarises the recent progress made in the organocatalytic synthesis of atropisomeric compounds. Methodologies based on dynamic kinetic resolution and direct access to BINOL-like biaryls are described. A particular emphasis is given to reaction mechanisms and to the development of strategies to obtain stable products by increasing the barrier to atropisomer interconversion during the reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7ob00908a | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States.
Poly(lactic acid) (PLA) offers a renewable and degradable alternative to petroleum-based plastic, but its mechanical properties are not ideal for many applications. Herein, we describe the synthesis and polymerization of 2-oxo-3,8-dioxabicyclo[3.2.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
Simple and sustainable three- and four-step sequences of di-OH-protection/mono-OMe-deprotection/OrgRC and di-OH-protection/mono-OMe-deprotection/OrgRC/OMe-deprotection protocols were developed to construct biologically active natural products of irisoquin, irisoquin A, irisoquin D, irisoquin F, sorgoleone-364, embelin, rapanone, 5--methylembelin, 5--methylrapanone and their analogues from the commercially available 2,5-dihydroxy-1,4-benzoquinone, aliphatic aldehydes and Hantzsch ester (1,4-DHP) in very good to excellent yields by using organocatalytic reductive coupling (OrgRC) as key reaction. Many of these natural compounds exhibited a broad spectrum of biological activities including antioxidant, anti-inflammatory, anticonvulsant, anxiolytic, analgesic, anthelmintic, antitumor, antibacterial, and antifertility properties. At the same time, simple and readily available 2,5-dihydroxy-1,4-benzoquinone was transformed into a functionally rich library of 2,5-dihydroxy-3,6-dialkyl-1,4-benzoquinones in very good yields by using sequential OrgRC followed by deprotection reactions and resulting natural/unnatural products would be excellent targets for investigation to show their biological activities compared to known natural products.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, Münster 48149, Germany.
Asymmetric synthesis presents many challenges, with the selective formation of chiral bridged polyheterocycles being a notable example. Cycloadditions using bicyclo[1.1.
View Article and Find Full Text PDFMolecules
January 2025
Institute for Organic Synthesis and Photoreactivity of the Italian National Research Council, Area della Ricerca di Bologna, Via P. Gobetti, 101, 40129 Bologna, Italy.
The utilization of the homogeneous ()-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix).
View Article and Find Full Text PDFMolecules
January 2025
Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, 4 allée Emile Monso, 31030 Toulouse, France.
In organic synthesis, the solvent is the chemical compound that represents the largest proportion of the process. However, conventional solvents are often toxic and dangerous for the environment, and an interesting alternative is to replace them by water. In this context, catalyst surfactants allow both organic reagents in water to be solubilized and organic reactions to be catalyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!