Most theoretical descriptions of lyotropic cholesteric liquid crystals to date focus on homogeneous systems in which the rod concentration, as opposed to the rod orientation, is uniform. In this work, we build upon the Onsager-Straley theory for twisted nematics and study the effect of weak concentration gradients, generated by some external potential, on the cholesteric twist. We apply our theory to chiral nematics of nanohelices in which the supramolecular helix sense is known to spontaneously change sign upon variation of particle concentration, passing through a so-called compensation point at which the mesoscopic twist vanishes. We show that the imposed field offers exquisite control of the handedness and magnitude of the helicoidal director field, even at weak field strengths. Within the same framework we also quantify the director fluctuation spectrum and find evidence for a correlation length diverging at the compensation point.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7sm00719a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!