Joint effects of genetic and environmental factors have been increasingly recognized in the development of many complex human diseases. Despite the popularity of case-control and case-only designs, longitudinal cohort studies that can capture time-varying outcome and exposure information have long been recommended for gene-environment (G × E) interactions. To date, literature on sampling designs for longitudinal studies of G × E interaction is quite limited. We therefore consider designs that can prioritize a subsample of the existing cohort for retrospective genotyping on the basis of currently available outcome, exposure, and covariate data. In this work, we propose stratified sampling based on summaries of individual exposures and outcome trajectories and develop a full conditional likelihood approach for estimation that adjusts for the biased sample. We compare the performance of our proposed design and analysis with combinations of different sampling designs and estimation approaches via simulation. We observe that the full conditional likelihood provides improved estimates for the G × E interaction and joint exposure effects over uncorrected complete-case analysis, and the exposure enriched outcome trajectory dependent design outperforms other designs in terms of estimation efficiency and power for detection of the G × E interaction. We also illustrate our design and analysis using data from the Normative Aging Study, an ongoing longitudinal cohort study initiated by the Veterans Administration in 1963. Copyright © 2017 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5523112PMC
http://dx.doi.org/10.1002/sim.7332DOI Listing

Publication Analysis

Top Keywords

designs longitudinal
12
g × e interaction
12
exposure enriched
8
enriched outcome
8
longitudinal studies
8
interaction joint
8
longitudinal cohort
8
outcome exposure
8
sampling designs
8
full conditional
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!