Toward a Cure: Does Host Immunity Play a Role?

mSphere

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.

Published: April 2017

Three decades of research on human immunodeficiency virus (HIV) and AIDS reveal that the human body has developed through evolution a genome immune system embodying epigenetic regulation against pathogenic nucleic acid invasion. In HIV infection, this epigenetic regulation plays a cardinal role in HIV RNA production that silences HIV transcription at a molecular (RNA) level, controls viral load at a cellular (biological) level, and governs the viremic stage of AIDS at the clinical (patient) level. Even though the human genome is largely similar among humans and HIV is a single viral species, human hosts show significant differences in viral RNA levels, ranging from cell to organ to individual and expressed as elite controllers, posttreatment controllers, and patients with AIDS. These are signature biomarkers of typical epigenetic regulation whose importance has been shunted aside by interpreting all of AIDS pathogenesis by the known properties of innate and adaptive immunity. We propose that harnessing the host genome immune system, defined as epigenetic immunity, against HIV infection will lead toward a cure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422033PMC
http://dx.doi.org/10.1128/mSphere.00138-17DOI Listing

Publication Analysis

Top Keywords

epigenetic regulation
12
genome immune
8
immune system
8
hiv infection
8
hiv
6
cure host
4
host immunity
4
immunity play
4
play role?
4
role? three
4

Similar Publications

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Plant architecture greatly contributes to grain yield, but the epigenetic regulation of plant architecture remains elusive. Here, we identified the maize (Zea mays L.) mutant plant architecture 1 (par1), which shows reduced plant height, shorter and narrower leaves, and larger leaf angles than the wild type.

View Article and Find Full Text PDF

ABCA1-Super Enhancer RNA Promotes Cholesterol Efflux, Reduces Macrophage-Mediated Inflammation and Atherosclerosis.

JACC Basic Transl Sci

December 2024

Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

We describe a previously uncharacterized ATP-binding cassette A1 super enhancer RNA (ABCA1-seRNA)-mediated cholesterol efflux. In addition, it promoted macrophage inflammatory cytokine release, and was causally correlated with coronary artery disease severity. Mechanistically, ABCA1-seRNA upregulated cholesterol efflux by interacting with mediator complex subunit 23 and recruiting retinoid X receptor-alpha and liver X receptor-alpha to promote ABCA1 transcription in a manner.

View Article and Find Full Text PDF

Harnessing Nanomaterials for Next-Generation DNA Methylation Biosensors.

Small

January 2025

Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.

DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques.

View Article and Find Full Text PDF

Selective G6PDH inactivation for Helicobacter pylori eradication with transformed polysulfide.

Sci China Life Sci

January 2025

CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

Alternative treatment for the highly prevalent Helicobacter pylori infection is imperative due to rising antibiotic resistance. We unexpectedly discovered that the anti-H. pylori component in garlic is hydrogen polysulfide (HS, n⩾2), not organic polysulfides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!