DNA damage by chemically generated singlet oxygen.

Free Radic Res Commun

Department of Biophysics, Free University, Amsterdam, The Netherlands.

Published: February 1989

A naphthalenic endoperoxide was used as a non-photochemical source of singlet oxygen (1O2) to examine some interactions between this reactive oxygen species and DNA. High molecular weight DNA (ca. 10(8) daltons) was exposed to 120 mol m-3 1O2 (cumulative concentration) and analyzed for interstrand crosslinkage by hydroxyl apatite chromatography following formamide denaturation. No evidence for 1O2-induced interstrand crosslinking was obtained. The capacity of 1O2 to generate strand breaks in single-stranded (ss) and double-stranded (ds) DNA was investigated by sucrose gradient centrifugation analysis of bacteriophage phi X174 DNA. No direct strand breaks could be detected at neutral pH, whereas extensive strand breakage was observed after treatment with alkali. Possible biological consequences of 1O2-exposure were assessed by examining the plaque-forming capacity of ss and ds phi X174 DNA molecules using wildtype Escherichia coli spheroplasts as recipients. Without any further treatment with heat or alkali, exposure to the endoperoxide resulted in a time- and dose-dependent inactivation, ss DNA being considerably more sensitive than ds DNA. From the present results and those reported earlier (Nieuwint et al.,) we infer that 1O2-induced inactivation of phi X174 DNA is not due to DNA backbone breakage nor to interstrand crosslinking, but rather to some form of damage to the base or sugar moiety of the DNA, the exact nature of which remains to be elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10715768709065301DOI Listing

Publication Analysis

Top Keywords

phi x174
12
x174 dna
12
dna
11
singlet oxygen
8
interstrand crosslinking
8
strand breaks
8
dna damage
4
damage chemically
4
chemically generated
4
generated singlet
4

Similar Publications

Highly stable, antiviral, antibacterial cotton textiles via surface engineering.

Int J Biol Macromol

December 2024

School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China. Electronic address:

Article Synopsis
  • The pandemic has emphasized the need for textiles that can quickly inactivate pathogens to safeguard public health, particularly for cotton fabric.
  • A new cotton fabric, Co-CMC@Cu, was developed by treating cotton with carboxymethyl chitosan and loading it with copper ions, enabling rapid and effective pathogen inactivation with minimal copper usage.
  • This innovative fabric demonstrated impressive bacterial reduction rates of over 94% within 10 minutes and maintained high efficacy after 150 washes, making it a promising option for antiviral and antimicrobial applications during health crises.
View Article and Find Full Text PDF

A computational model for bacteriophage ϕX174 gene expression.

PLoS One

October 2024

Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America.

Bacteriophage ϕX174 has been widely used as a model organism to study fundamental processes in molecular biology. However, several aspects of ϕX174 gene regulation are not fully resolved. Here we construct a computational model for ϕX174 and use the model to study gene regulation during the phage infection cycle.

View Article and Find Full Text PDF

Enhanced virucidal activity of facet-engineered Cu-doped TiO nanorods under visible light illumination.

Water Res

January 2025

School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:

Crystal facet engineering has emerged as a promising approach to enhance photocatalytic activity of semiconductors by preferentially accumulating charge carriers (electrons and holes) on specific facets. This facilitates efficient electron and hole transfer across the semiconductor/cocatalyst interface, enabling their transport to the cocatalyst surface for redox reactions. In this study, three Cu-doped TiO nanorods with small, medium, and large ratios of reductive {110} to oxidative {111} facets were synthesized (namely Cu-TiO-SR, Cu-TiO-MR, and Cu-TiO-LR, respectively).

View Article and Find Full Text PDF

Efficacy of UVC-LED radiation in bacterial, viral, and protozoan inactivation: an assessment of the influence of exposure doses and water quality.

Water Res

November 2024

Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil. Electronic address:

Article Synopsis
  • Ultraviolet light-emitting diodes (UV-LEDs) are a promising alternative to traditional mercury lamps for disinfecting water by inactivating microorganisms.
  • This study specifically examined the effectiveness of a bench-scale UVC-LED system at 280 nm on various pathogens, including E. coli, PhiX-174, MS2, and Cryptosporidium oocysts, under different water qualities.
  • Results showed that while microbiological reductions varied with exposure time and water quality, UVC-LED technology was generally effective in achieving significant reductions of bacteria and viruses, highlighting its potential for use in small water systems as recommended by the World Health Organization.
View Article and Find Full Text PDF

IbpAB small heat shock proteins are not host factors for bacteriophage ϕX174 replication.

Virology

September 2024

School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia. Electronic address:

Bacteriophage ϕX174 is a small icosahedral virus of the Microviridae with a rapid replication cycle. Previously, we found that in ϕX174 infections of Escherichia coli, the most highly upregulated host proteins are two small heat shock proteins, IbpA and IbpB, belonging to the HSP20 family, which is a universally conserved group of stress-induced molecular chaperones that prevent irreversible aggregation of proteins. Heat shock proteins were found to protect against ϕX174 lysis, but IbpA/B have not been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!