A novel function of TLR4 in mediating the immunomodulatory effect of Benzanthrone, an environmental pollutant.

Toxicol Lett

Food Toxicology Lab, Food, Drug and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan 31,Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India. Electronic address:

Published: July 2017

AI Article Synopsis

  • Benzanthrone (BA) triggers inflammatory responses in the spleen of Balb/c mice, particularly affecting macrophages involved in immune defense, leading to increased nitric oxide and inflammatory markers while reducing MHC class-I and II receptor levels.
  • The study also explores BA's interaction with Toll-like receptors (TLRs), specifically identifying TLR4 as having the strongest binding affinity to BA, linked to amplified inflammatory responses.
  • Western blotting results indicate that BA exposure enhances the expression of various TLRs and downstream signaling proteins, highlighting the complex relationship between BA-induced inflammation and oxidative stress in immune cells.

Article Abstract

Our prior studies have reported that Benzanthrone (BA) manifests inflammatory responses in the spleen of Balb/c mice. The present investigation was carried out to study the impact of BA on macrophages, which are the primary scavenger cells in the body that act as a connecting link between innate and adaptive immunity. Parenteral administration of BA (daily for one week) to mice resulted in enhanced levels of nitric oxide (NO) and overexpression of inflammatory markers (COX-2, MMP-9 and PGE-2) in macrophages; however the level of MHC class-I and MHC class-II receptors were down regulated. Further, the potential membrane receptor targets (TLRs) of BA and its interaction with TLRs was investigated using computational methods. Professional phagocytes play pivotal roles in sensing bacteria through pathogen-associated molecular patterns (PAMPs) by various pathogen recognition receptors (PRRs), including Toll-like receptors (TLRs). Several studies have implicated these TLRs in the amplification of the inflammatory responses, however the fundamental role played by TLRs in mediating the inflammation associated with xenobiotics is still obscure and not understood. From the in silico analysis, it was evident that BA showed the highest binding affinity with TLR4 as compared to other TLRs. The western blotting studies confirmed that BA exposure indeed upregulated the expression of TLR 4, 5 and 9. Moreover, the downstream signaling cascade proteins of TLRs such as myeloid differentiation primary response protein-88 (MyD88), IL-1 receptor associated kinase (IRAK-1), and TNFR-associated factor (TRAF-6) were found to be enhanced in the BA treated groups. It was also observed that BA treatment increased the expression of ICAM-1, p-Lyn, p-Syk, p-PI3-K, IP, PLC-γ, cAMP and Ca influx, which are known to play a critical role in TLR mediated inflammation. Earlier we found that toxic effects of BA in spleen were mediated by oxidative stress which was partially neutralized by NAC exposure. Hereby, we report that NAC treatment in conjunction with BA attenuated the expression of BA induced TLR4, as well as the inflammatory markers such as COX2 and p-NFkB in macrophages. These findings demonstrated the critical role of TLRs in the regulation of the BA-induced inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2017.05.008DOI Listing

Publication Analysis

Top Keywords

inflammatory responses
8
inflammatory markers
8
tlrs
8
critical role
8
novel function
4
function tlr4
4
tlr4 mediating
4
mediating immunomodulatory
4
immunomodulatory benzanthrone
4
benzanthrone environmental
4

Similar Publications

Background: As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties.

Aim: The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP.

View Article and Find Full Text PDF

HCAR2 Modulates the Crosstalk between Mammary Epithelial Cells and Macrophages to Mitigate Staphylococcus aureus Infection in the Mouse Mammary Gland.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.

Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.

View Article and Find Full Text PDF

Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.

View Article and Find Full Text PDF

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.

View Article and Find Full Text PDF

The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!