A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dipicolinic acid as a novel spore-inspired excipient for antibody formulation. | LitMetric

Dipicolinic acid as a novel spore-inspired excipient for antibody formulation.

Int J Pharm

Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK. Electronic address:

Published: June 2017

Ionic excipients are commonly used in aqueous therapeutic monoclonal antibody (mAb) formulations. Novel excipients are of industrial interest, with a recent focus on Arg salt forms and their application as viscosity reducing and stabilizing additives. Here, we report that the calcium salt of dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid), uniquely present in nature in the core of certain bacterial spores, reduces the viscosity of a mAb formulated at 150mg/mL, below that achieved by Arg hydrochloride at the same concentration (10mM). DPA also reduced the reversible phase separation of the same formulation, which characteristically occurs for this mAb upon cooling to 4°C. Differential scanning calorimetry and differential scanning fluorimetry did not reveal a conformation destabilisation of the mAb in the presence of 10mM DPA, or by the related quinolinic acid (QA, pyridine-2,3-dicarboxylic acid). However, fluorescence spectrophotometry did reveal localised (aromatic) conformational changes to the mAb attributed to DPA, dependent on the salt form. While precise mechanisms of action remain to be identified, our preliminary data suggest that these DPA salts are worthy of further investigation as novel ionic excipient for biologics formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.05.012DOI Listing

Publication Analysis

Top Keywords

dipicolinic acid
8
10mm dpa
8
differential scanning
8
mab
5
dpa
5
acid novel
4
novel spore-inspired
4
spore-inspired excipient
4
excipient antibody
4
antibody formulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!