Diatoms are unicellular organisms evolved by secondary endosymbiosis. Although studied in many aspects, the functions of vacuolar-like structures of these organisms are rarely investigated. One of these structures is a dominant central vacuole-like compartment with a marbled phenotype, which is supposed to represent a chrysolaminarin-storing and carbohydrate mobilization compartment. However, other functions as well as targeting of proteins to this compartment are not shown experimentally. In order to study trafficking of membrane proteins to the vacuolar membrane, we scanned the genome for intrinsic vacuolar membrane proteins and used one representative for targeting studies. Our work led to the identification of several proteins located in the vacuolar membrane as well as the sub-compartmentalized localization of one protein. In addition, we show that a di-leucine-based motif is an important signal for correct targeting to the central vacuole of diatoms, like it is in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.protis.2017.03.001DOI Listing

Publication Analysis

Top Keywords

vacuolar membrane
16
membrane proteins
12
central vacuole
8
membrane
5
proteins
5
vacuole diatom
4
diatom phaeodactylum
4
phaeodactylum tricornutum
4
tricornutum identification
4
vacuolar
4

Similar Publications

An intracellular protozoan, the Apicomplexan parasite () infects nucleated cells, in which it triggers the formation of a specialized membrane-confined cytoplasmic vacuole, named the parasitophorous vacuole (PV). One of the most prominent events in the parasite's intracellular life is the congregation of the host cell mitochondria around the PV. However, the significance of this event has remained largely unsolved since the parasite itself possesses a functional mitochondrion, which is essential for its replication.

View Article and Find Full Text PDF

Vps4a Mediates a Unified Membrane Repair Machinery to Attenuate Ischemia/Reperfusion Injury.

Circ Res

January 2025

Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).

Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.

View Article and Find Full Text PDF

The P-type ATPase gene AHA5 is involved in proanthocyanidins accumulation in Medicago truncatula.

Int J Biol Macromol

January 2025

Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Proanthocyanidins (PAs) are the second most abundant plant phenolic natural products. The proton membrane H-ATPase (AHA) is required for PA transportation in vacuoles, but it remains unclear which AHA gene(s) encode tonoplast proton pump in M. truncatula.

View Article and Find Full Text PDF
Article Synopsis
  • The vacuolar-type H-ATPase (V-ATPase) is essential for regulating pH levels in cells, and its activity is influenced by various pathways, particularly phosphorylation, which is not well understood.
  • In response to starvation, the kinase ABL1 phosphorylates a specific subunit of V-ATPase, ATP6V1B2, enhancing its assembly and function.
  • ABL1 inhibition disrupts V-ATPase assembly and lysosomal acidification, leading to impaired autophagy processes, including the degradation of damaged cellular components, highlighting ABL1's key role in cellular stress responses.
View Article and Find Full Text PDF

Cargo hitchhiking autophagy - a hybrid autophagy pathway utilized in yeast.

Autophagy

January 2025

Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA.

Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, is a valuable model organism for deciphering molecular details that define macroautophagy pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!