Transcriptomic analysis of porcine PBMCs in response to FMDV infection.

Acta Trop

State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China. Electronic address:

Published: September 2017

Foot-and-mouth disease (FMD) is a significant zoonotic infectious disease. It has an important economic impact throughout the world. As well, it is a considerable threat to food security. At present, the molecular mechanism of FMDV infection is not clear to a large extent. Innate immune response is the first line of defense against infectious diseases. The systematic analysis of the host immune response to infection has an important role in understanding the pathogenesis of infection. However, there are few reports about effect of immune regulation on virus replication in the interaction of virus and host cellular. High-throughput RNA-seq technology as a powerful and efficient means for transcript analysis provides a new insight into FMDV study. In this study, RNA extracted from pig PBMCs infected with O subtype FMDV at 4 dpi. A total of 29942658 and 31452917 Illumina read pairs were obtained from the non-infected (NI) group and infected (I) group, respectively. The clean bases for all samples are 3.61G (NI group) and 3.79G (I group), respectively. The clean reads of the NI and I group that mapped to pig genome data were 47195073 (81.82%) and 46556714 (76.85%), respectively. Most of the clean reads were distributed in the exon region, followed by intron region and intergenic region. Differently expressed (DE) genes were analyzed using edgeR software. 451 genes were differentially expressed between the infected and the non-infected groups. According to the comparison analysis, more genes were down-regulated in the non-infected samples than in those infected with FMDV.66 out of 451 genes were down-regulated, 385 out of 451 genes were up-regulated following FMDV infection. For function classification and pathway analysis, among 17741 assembled unigenes, there are 349 genes which are different genes of GO notes. Moreover, 49 genes were down-regulated, 300 genes were up-regulated associate with GO term. 1621 were successfully annotated by GO assignments, belonging to one or more of the three categories: biological process, cellular component, and molecular function. According to KEGG analysis,the main pathway was represented including protein processing in endoplasmic reticulum, phagosome, cell cycle and cytokine-cytokine receptor interaction. Some key DE genes related to immune process and signaling pathways were analyzed and quantified by RT-PCR. This is the first systematical transcriptome analysis of pig PBMCs infected by FMDV. These findings will help us better understand the host Cell-FMDV interaction and its relationship to pathogenesis, as well as contribute to the prevention and control of FMDV.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2017.05.009DOI Listing

Publication Analysis

Top Keywords

fmdv infection
12
451 genes
12
genes down-regulated
12
genes
10
immune response
8
pig pbmcs
8
pbmcs infected
8
group clean
8
clean reads
8
genes up-regulated
8

Similar Publications

Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation.

View Article and Find Full Text PDF

Molecular surveillance of FMD epidemiology is a fundamental tool for advancing our understanding of virus biology, monitoring virus evolution, and guiding vaccine design. The accessibility of genetic data will facilitate a more comprehensive delineation of FMDV phylogeny on a global scale. In this study, we investigated the FMDV strains circulating in Russia during the 2013-2014 period in geographically distant regions utilizing whole genome sequencing followed by maximum-likelihood phylogenetic reconstruction of whole genome and VP1 gene sequences.

View Article and Find Full Text PDF

As an essential type of vaccine, live attenuated vaccines (LAVs) play a crucial role in animal disease prevention and control. Nevertheless, developing LAVs faces the challenge of balancing safety and efficacy. Understanding the mechanisms animal viruses use to antagonize host antiviral innate immunity may help to precisely regulate vaccine strains and maintain strong immunogenicity while reducing their pathogenicity.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) is a highly contagious, economically important disease of livestock and wildlife species. Active monitoring and understanding the epidemiology of FMDV underpin the foundations of control programmes. In many endemic areas, however, veterinary resources are limited, resulting in a requirement for simple sampling techniques to increase and supplement surveillance efforts.

View Article and Find Full Text PDF

Foot-and-Mouth Disease is a highly contagious transboundary animal disease. FMD has caused a significant economic impact globally due to direct losses and trade restrictions on animals and animal products. This study utilized multi-distance spatial cluster analysis, kernel density analysis, directional distribution analysis to investigate the spatial distribution patterns of historical FMD epidemics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!