Objective: To evaluate the results of multigene panel testing among Ashkenazi Jewish compared with non-Ashkenazi Jewish patients.

Methods: We reviewed the medical records for all patients who underwent multigene panel testing and targeted BRCA1/2 testing at a single institution between 6/2013-1/2015. Clinical actionability for identified pathogenic mutations was characterized based on the National Comprehensive Cancer Network (NCCN) guidelines and consensus statements and expert opinion for genes not addressed by these guidelines.

Results: Four hundred and fifty-four patients underwent multigene panel screening, including 138 Ashkenazi Jewish patients. The median patient age was fifty-two years. Three hundred and fifty-four patients (78%) had a personal history of cancer. Two hundred and fifty-one patients had breast cancer, 49, ovarian cancer, 26, uterine cancer and 20, colorectal cancer. We identified 62 mutations in 56 patients and 291 variants of uncertain significance in 196 patients. Among the 56 patients with mutations, 51 (91%) had actionable mutations. Twenty mutations were identified by multigene panels among Ashkenazi Jewish patients, 18 of which were in genes other than BRCA1/2. A review of targeted BRCA1/2 testing performed over the same study period included 103 patients and identified six mutations in BRCA1/2, all of which occurred in Ashkenazi Jewish patients. Among all Ashkenazi Jewish patients undergoing genetic testing, 25/183 (14%) had a mutation, 24/25 of which were actionable (96%) and 17/25 patients (68%) had mutations in non BRCA1/2 genes.

Conclusions: With the rapid acceptance of multigene panels there is a pressing need to understand how this testing will affect patient management. While traditionally many Ashkenazi Jewish patients have undergone targeted BRCA1/2 testing, our data suggest consideration of multigene panels in this population as the majority of the results are clinically actionable and often in genes other than BRCA1/2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygyno.2017.04.009DOI Listing

Publication Analysis

Top Keywords

ashkenazi jewish
28
jewish patients
24
multigene panels
16
patients
15
multigene panel
12
targeted brca1/2
12
brca1/2 testing
12
panels ashkenazi
8
jewish
8
mutations
8

Similar Publications

Background: The NHS Jewish BRCA Testing Programme is offering germline and genetic testing to people with ≥1 Jewish grandparent. Who have an increased likelihood of having an Ashkenazi Jewish (AJ) founder germline pathogenic variant (gPV) compared with the general population.Testing is offered via a self-referral, home-based saliva sampling pathway, supported by a genetic counsellor telephone helpline.

View Article and Find Full Text PDF

Somatic mosaicism is an important cause of disease, but mosaic and somatic variants are often challenging to detect because they exist in only a fraction of cells. To address the need for benchmarking subclonal variants in normal cell populations, we developed a benchmark containing mosaic variants in the Genome in a Bottle Consortium (GIAB) HG002 reference material DNA from a large batch of a normal lymphoblastoid cell line. First, we used a somatic variant caller with high coverage (300x) Illumina whole genome sequencing data from the Ashkenazi Jewish trio to detect variants in HG002 not detected in at least 5% of cells from the combined parental data.

View Article and Find Full Text PDF

Purpose: Carrier screening identifies reproductive risk for autosomal recessive and X-linked genetic conditions. Currently, some medical society guidelines continue to recommend ethnicity-based carrier screening for conditions associated with Ashkenazi Jewish (AJ) ancestry. We assessed the utility and limitations of these guidelines in a large, ethnically and genetically diverse cohort of genotyped individuals.

View Article and Find Full Text PDF

Leveraging diverse genomic data to guide equitable carrier screening: Insights from gnomAD v.4.1.0.

Am J Hum Genet

January 2025

Medical Genetics and Genomics Laboratories, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA; Departments of Pathology, and Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Electronic address:

Analysis of exome data from the latest release of the Genome Aggregation Database (gnomAD v.4.1.

View Article and Find Full Text PDF

Background: Inherited retinal diseases (IRDs) are clinically complex and genetically heterogeneous visual impairment disorders with varying penetrance and severity. Disease-causing variants in at least 289 nuclear and mitochondrial genes have been implicated in their pathogenesis.

Methods: Whole exome sequencing results were analyzed using established pipelines and the results were further confirmed by Sanger sequencing and minigene splicing assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!