Environmental Calcium Controls Alternate Physical States of the Caulobacter Surface Layer.

Biophys J

Department of Structural Biology, Stanford University, Stanford, California; Bioscience Division, SLAC National Accelerator Laboratory, Menlo Park, California. Electronic address:

Published: May 2017

Surface layers (S-layers) are paracrystalline, proteinaceous structures found in most archaea and many bacteria. Often the outermost cell envelope component, S-layers serve diverse functions including aiding pathogenicity and protecting against predators. We report that the S-layer of Caulobacter crescentus exhibits calcium-mediated structural plasticity, switching irreversibly between an amorphous aggregate state and the crystalline state. This finding invalidates the common assumption that S-layers serve only as static wall-like structures. In vitro, the Caulobacter S-layer protein, RsaA, enters the aggregate state at physiological temperatures and low divalent calcium ion concentrations. At higher concentrations, calcium ions stabilize monomeric RsaA, which can then transition to the two-dimensional crystalline state. Caulobacter requires micromolar concentrations of calcium for normal growth and development. Without an S-layer, Caulobacter is even more sensitive to changes in environmental calcium concentration. Therefore, this structurally dynamic S-layer responds to environmental conditions as an ion sensor and protects Caulobacter from calcium deficiency stress, a unique mechanism of bacterial adaptation. These findings provide a biochemical and physiological basis for RsaA's calcium-binding behavior, which extends far beyond calcium's commonly accepted role in aiding S-layer biogenesis or oligomerization and demonstrates a connection to cellular fitness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425405PMC
http://dx.doi.org/10.1016/j.bpj.2017.04.003DOI Listing

Publication Analysis

Top Keywords

environmental calcium
8
s-layers serve
8
s-layer caulobacter
8
aggregate state
8
crystalline state
8
concentrations calcium
8
caulobacter
6
s-layer
5
calcium
5
calcium controls
4

Similar Publications

This study investigates the influence of environmental factors on the secondary metabolites of Stachyslavandulifolia Vahl., focusing on how soil properties, temperature, and precipitation affect the yield and chemical composition of its essential oils. The research was conducted in two domains within three rangelands in Mazandaran province, Iran.

View Article and Find Full Text PDF

Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Adv Sci (Weinh)

January 2025

Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.

View Article and Find Full Text PDF

Roles of calcium in ameloblasts during tooth development: A scoping review.

J Taibah Univ Med Sci

February 2025

Department of Prosthodontics/Dental Material, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, India.

Objectives: Calcium ions (Ca) play crucial role in tooth development, particularly in maintaining enamel density during amelogenesis. Ameloblasts require specific proteins such as amelogenin, ameloblastin, enamelin, kallikrein, and collagen for enamel growth. Recent research has highlighted the importance of calcium and fluoride ions, as well as the TRPM7, STIM, and SOCE pathways, in regulating various stages of enamel formation.

View Article and Find Full Text PDF

Non-ionic surfactant self-assembly in calcium nitrate tetrahydrate and related salts.

Soft Matter

January 2025

School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.

Self-assembly of amphiphilic molecules can take place in extremely concentrated salt solutions, such as inorganic molten salt hydrates or hydrous melts. The intermolecular interactions governing the organization of amphiphilic molecules under such extreme conditions are not yet fully understood. In this study, we investigated the specific effects of ions on the self-assembly of the non-ionic surfactant CH(OCHCH)OH (CE) under extreme salt concentrations, using calcium nitrate tetrahydrate as a reference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!