The physiological root resorption of deciduous teeth is a normal phenomenon, but the mechanisms underlying this process are still unclear. In this study, deciduous dental pulp stem cells (DDPSCs) and permanent dental pulp stem cells (DPSCs) were derived from deciduous teeth and normal permanent teeth at different stages of resorption. In the middle stage of root resorption, DDPSCs exhibited an increase in the ability to induce osteoclast differentiation. Activation of the alpha 7 nicotinic acetylcholine receptor (α7 nAChR) by secretory mammalian Ly-6 urokinase-type plasminogen activator receptor-associated protein 1 (SLURP-1) caused a significant increase in the expression levels of NF-κB, receptor activator of nuclear factor-kappa B ligand (RANKL), and the ratio of RANKL/osteoprotegerin (OPG). These effects were inhibited by alpha-bungarotoxin (α-BTX). Furthermore, the expression levels of RANKL/OPG were significantly reduced following inhibition of NF-κB. High-strength, dynamic positive pressure increased the expression of SLURP-1 and α7 nAChR in DDPSCs in the stable stage. These data indicated that mechanical stress stimulated the expression of SLURP-1 and α7 nAChR in DDPSCs. Additionally, SLURP-1 activated α7 nAChR, thereby upregulating the expression of NF-κB and enhancing its activity, thus regulating RANKL/OPG expression and affecting the ability of DDPSCs to influence osteoclastogenesis, which likely enhances root resorption and leads to the physiological loss of deciduous teeth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2017.0033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!