Background: Autophagy is required for the maintenance of cardiomyocyte homeostasis. However, excessive autophagy plays a maladaptive role in pressure overload-induced heart failure. To identify mechanisms by which Stachydrine inhibits pressure overload-induced cardiac hypertrophy, we determined inhibitory activities against activation of NADPH oxidase, reactive oxygen species(ROS) production and excessive activation of autophagy.
Methods: Stachydrine was administered intragastrically to Wistar rats after Transverse aortic constriction(TAC) and H9c2 cells were treated with Stachydrine after Angiotension II stimulation. The activation of NADPH oxidase2 required the membrane translocation of p47phox and p67phox. Cell membrane fraction was isolated by ultracentrifuge in sucrose. The expression of p67phox, p47phox, gp91phox subunit in the cell membrane were determined by western blot. The combination of p67phox and gp91 phox subunit was detected by immunofluorescence staining. The expression of phosphorylated p47phox subunit was determined by western blot. The intracellular ROS were measured with DCF-DA fluoresence. The autophagic flux was measured by recording the fluorescence emission of the fusion protein mRFP-GFP-LC3 by dynamic live-cell imaging. Reuslts: We report here that stachydrine, a major constituent of Leonurus heterophyllus Sweet, inhibited AngII-induced excessive autophagy within H9c2 cells. Stachydrine blocked the over phosphorylation of the p47phox subunit, decreased the translocation of p47phox and p67phox to the membrane, inhibited the activity of NOX2, and reduced the generation of ROS. We also demonstrated that stachydrine ameliorated TAC-induced cardiac hypertrophy, dysfunction and excessive autophagy in vivo.
Conclusions: Our study highlights the importance of regulating NOX2 when autophagy is obviously activated. By inhibiting NOX2, Stachydrine inhibits ROS production, thus exerting a remarkable activity of inhibiting hypertrophy, which could have considerable effect on clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000477119 | DOI Listing |
Acta Pharmacol Sin
January 2025
Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
The aim of this study was to investigate the potential mechanism of Lu-Jiao Fang (LJF) inhibiting endothelial-to-mesenchymal transition (EndMT) in pressure overload-induced cardiac fibrosis. Pharmacokinetic behaviors of the ingredients of LJF were evaluated by LC-MS/MS analysis. Then putative pathways by which LJF regulates EndMT were analyzed by network pharmacology and verified in transverse aortic constriction-induced cardiac fibrosis rats.
View Article and Find Full Text PDFBiomedicines
December 2024
Institute of Biomedical Sciences, Academia Sinica, Taipei City 115201, Taiwan.
Background/objectives: Fucoidan, a sulfated polysaccharide derived from marine algae, is known for its antioxidant and immunomodulatory properties. Galectin-3 (Gal-3), a protein associated with cardiovascular fibrosis, has been identified as a potential therapeutic target in cardiac remodeling. This study aimed to evaluate whether fucoidan could inhibit Gal-3 activity and mitigate cardiac remodeling in a mouse model of pressure overload-induced cardiac hypertrophy.
View Article and Find Full Text PDFLife Sci
January 2025
Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address:
Aims: Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy (LVH) with key pathologic processes including myocardial necrosis, fibrosis, inflammation, and hypertrophy, which are involved in heart failure (HF), stroke, and even sudden death. Our aim was to explore the communication network among various cells in the heart of transverse aortic constriction (TAC) surgery induced HCM mice.
Materials And Methods: Single-cell RNA-seq data of GSE137167 was downloaded from the Gene Expression Omnibus (GEO) database.
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China. Electronic address:
Background: Cardiac hypertrophy is characterized by the upregulation of fetal genes, increased protein synthesis, and enlargement of cardiac myocytes. The mechanistic target of rapamycin complex 1 (mTORC1), which responds to fluctuations in cellular nutrient and energy levels, plays a pivotal role in regulating protein synthesis and cellular growth. While attempts to inhibit mTORC1 activity, such as through the application of rapamycin and its analogs, have demonstrated limited efficacy, further investigation is warranted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!