Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone.

Colloids Surf B Biointerfaces

Laboratory of Biomedical Nanotechnology, Universidade Brasil, Itaquera, Sao Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Institute of Research and Development (IP&D), University of Vale do Paraiba, Sao Jose dos Campos, Sao Paulo, Brazil; Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, USA; Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA. Electronic address:

Published: July 2017

Combining polyester scaffolds with synthetic nanohydroxyapatite (nHAp), which is bioactive and osteoconductive, is a plausible strategy to improve bone regeneration. Here, we propose the combination of PBAT [poly(butylene-adipate-co-terephthalate)] and synthetic nHAp (at 3 and 5wt%). PBAT is a relatively a new polymer with low crystallinity and attractive biodegradability and mechanical properties for orthopedic applications, however, with a still underexplored potential for in vivo applications. Then, we performed a careful biological in vitro and in vivo set of experiments to evaluate the influence of PBAT containing two different nHAp loads. For in vitro assays, osteoblast-like MG63 cells were used and the bioactivity and gene expression related to osteogenesis were evaluated by qRT-PCR. For in vivo experiments, twenty-four male rats were used and a tibial defect model was applied to insert the scaffolds. Micro-computed tomography (Micro-CT) and histological analysis were used to assess e bone neoformation after 6 weeks of implantation. Three point flexural tests measured the mechanical properties of the neoformed bone. All scaffolds showed promising in vitro properties, since they were not cytotoxic against MG-63 cells and promoted high cell proliferation and formation of mineralized nodules. From a mechanistic point-of-view, nHAp loading increased hydrophilicity, which in turn allowed for a better adsorption of proteins and consequent changes in the phenotypic expression of osteoblasts. nHAp induced better cellular responses on/in the scaffolds, which was mainly attributed to its osteoconductive and osteoinductive properties. Micro-CT images showed that nHAp at 3% and 5wt% led to more effective bone formation, presenting the highest bone volume after 6 weeks of implantation. Considering the three point flexural tests, 5wt% of nHAp positively influenced the flexural mode of the neoformed bone, but the stiffiness was similar between the 3% and 5wt% groups. In summary, this investigation demonstrated great potential for the application of these novel scaffolds towards bone regeneration and, thus, should be further studied.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.04.053DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
neoformed bone
12
vitro vivo
8
properties neoformed
8
bone
8
bone regeneration
8
nhap 5wt%
8
weeks implantation
8
three point
8
point flexural
8

Similar Publications

A Dual-Pathway Responsive Mechanophore for Intelligent Luminescent Polymer Materials.

J Am Chem Soc

January 2025

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.

Mechanoluminescent units, when integrated into polymer matrices, undergo structural transformations in response to mechanical force, resulting in changes in fluorescence. This phenomenon holds considerable promise for the development of stress-sensing materials. Despite the high demand for robust, tunable mechanoluminescent mechanophores for force assessment and smart force-responsive materials, strategies for their design and synthesis remain underdeveloped.

View Article and Find Full Text PDF

The present study summarises recent developments in solar-assisted extraction systems for distillation of essential oil from aromatic and medicinal plants. Various solar integrated essential oil extraction systems are compared based on performance parameters such as essential oil yield and system efficiency along with their potential effects on the domains of renewable energy. Solar steam distillation is an environmentally beneficial and energy-efficient technology of desalination that is especially ideal for areas with plentiful sun resources.

View Article and Find Full Text PDF

This paper investigates the impact of treatment with chemical solutions of varying pH values on the micro-macroscopic damage in coal samples under load, employing a combination of Small Angle X-ray Scattering (SAXS) experiments and uniaxial compression tests. The experimental results show that soaking coal samples in NaOH, HCl, and distilled water for 7 days leads to reductions in uniaxial compressive strength by 39.19%, 47.

View Article and Find Full Text PDF

Surfactant chemistry can affect the phenolic foam (PF) properties by controlling the collision and combination of the created bubbles during foam production. The study was accomplished using two surfactant families, nonionic: polysorbate (Tween80) and anionic: sodium and ammonium lauryl sulfates (SLS30 and ALS70) and sodium laureth sulfate (SLES270) to manufacture PF foams. Tween80 and SLS30 resulted in foams with the lowest and highest densities, 20.

View Article and Find Full Text PDF

Nanomechanical responses (force-time profiles) of crystal lattices under deformation exhibit random critical jumps, reflecting the underlying structural transition processes. Despite extensive data collection, interpreting dynamic critical responses and their underlying mechanisms remains a significant challenge. This study explores a microscopic theoretical approach to analyse critical force fluctuations in martensitic transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!