A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Automated Posttonsillectomy Bleed Capture With Self-report. | LitMetric

Comparison of Automated Posttonsillectomy Bleed Capture With Self-report.

JAMA Otolaryngol Head Neck Surg

Department of Surgery and Center for Outcomes Research in Surgery, Indiana University School of Medicine, Indianapolis.

Published: August 2017

Importance: Tonsillectomy is one of the most common procedures performed by otolaryngologists and is associated with postoperative bleeding. Bleed rates are usually monitored by self-report.

Objective: To evaluate whether using automated capture and reporting of pediatric posttonsillectomy bleeding is feasible and accurate compared with traditional self-reporting by the surgical team.

Design, Setting, And Participants: An automated complication-reporting algorithm was designed to query the local health information exchange and then tested against self-reported tonsillectomy complication data collected from January 1, 2014, through December 31, 2015, at a tertiary pediatric hospital. The algorithm identified patients undergoing tonsillectomy and searched their postoperative encounters for a hand-selected set of diagnosis codes from the International Classification of Diseases, Ninth Revision and International Statistical Classification of Diseases and Related Health Problems, Tenth Revision and free-text words to identify complication events. Five months of the 2014-2015 data set were used to help design the algorithm. Data from the remaining 19 months were compared with self-reported complications.

Main Outcomes And Measures: Automated system findings compared with self-reported bleeding events.

Results: During the 19-month period, 1017 tonsillectomies were performed. We compared the algorithm's effectiveness in finding tonsillectomy and adenotonsillectomy procedures for the evaluated surgeons with the hand-reviewed master tonsillectomy list. The algorithm reported 51 false-positive (5.01% missed) and 74 false-negative (7.28% misidentified) procedures. The algorithm agreed with self-report for 986 tonsillectomies and disagreed on 31 cases (3.05%) (κ = 0.69; 95% CI, 0.66-0.73). The algorithm was found to be sensitive to correctly identifying 60.53% (95% CI, 48.63%-71.34%) of tonsillectomies as having bleeding complications, with a specificity of 98.30% (95% CI, 97.19%-98.99%).

Conclusions And Relevance: Capture of posttonsillectomy bleeding is possible through an automatic search of the medical record, although the algorithm will require continued refinement. Leveraging health information exchange data increases the possibilities of capturing complications at hospitals outside the local health system. Use of these algorithms will allow repeatable automated feedback to be provided to surgeons on a cyclical basis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5710553PMC
http://dx.doi.org/10.1001/jamaoto.2017.0148DOI Listing

Publication Analysis

Top Keywords

posttonsillectomy bleeding
8
local health
8
health exchange
8
classification diseases
8
compared self-reported
8
algorithm
7
tonsillectomy
5
bleeding
5
comparison automated
4
automated posttonsillectomy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!