Influence of site index on the relationship between forest net primary productivity and stand age.

PLoS One

University of Toronto, Department of Geography and Program in Planning, Toronto, Ontario, Canada.

Published: September 2017

Previous studies show that forest net primary productivity (NPP) varies pronouncedly with stand age, and these variations play a crucial role in determining forest carbon sinks or sources at regional scales. Some forest carbon cycling models, eg. InTEC (The integrated terrestrial ecosystem C-budget model), calculates annual forest NPP in the long term according to normalized NPP-age relationships and the reference forest NPP at a given age. Therefore, the accurate NPP-age relationship is important for forest NPP estimation. In this study, NPP at various stand ages for twelve major forest stand types in Heilongjiang Province in northeast China is derived from yield tables with consideration of the total biomass increment and foliage and fine-root turnovers. Similar to previous studies, our results also show that forest NPP increases quickly at young ages, reaches the maximum value at middle age (10-40 years old), and then decreases to a relative stable level at old ages. However, we additionally found that forests under better site conditions have faster growth rates in young ages and steeper declines after reaching the maximum. Therefore, when the NPP-age curves for different site indices are normalized against the maximum value of each curve, there are significant differences among them. These differences have implications on the methodology for estimating the spatial distribution of forest carbon sources and sinks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426654PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177084PLOS

Publication Analysis

Top Keywords

forest npp
16
forest carbon
12
forest
10
relationship forest
8
forest net
8
net primary
8
primary productivity
8
stand age
8
previous studies
8
studies forest
8

Similar Publications

Sr and Cs distribution in Chornobyl forests: 30 years after the nuclear accident.

J Environ Radioact

January 2025

Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA.

The primary aim of this study was to quantify patterns in the distribution of Sr and Cs activity in pine (Pinus sylvestris L.: 18 sites) and birch (Betula pendula Roth.: 2 sites) forests within the Chornobyl exclusion zone, 30 years after the Chornobyl nuclear power plant (NPP) accident (1986).

View Article and Find Full Text PDF

An in-depth understanding of carbon dynamics and ecosystem productivity is essential for conservation and management of different ecosystems. Ecosystem dynamics and carbon budget are assessed by estimating net ecosystem production (NEP) across different global ecosystems. An ecological productivity assessment of forest and floating meadow ecosystems in Keibul Lamjao National Park (KLNP), Manipur, North East India, was conducted using the multi-criteria decision-making process namely, gray relational analysis (GRA).

View Article and Find Full Text PDF

Exploring the composition of regional soil organic carbon (SOC) components and identifying their influencing factors are of utmost importance to deeply understand the potential mechanisms of SOC change in cropland soil. Based on data from 871 soil sampling points, this study explored the characteristics of soil particulate and mineral-associated organic carbon (POC and MAOC) in the surface soil of cropland and the relationships with climate, terrain, soil texture, agricultural land-use type, and fertilization across the Sichuan basin using analysis of variance, correlation analysis, and a random forest model. The results showed that the average content of POC and MAOC in the surface soil of cropland was 5.

View Article and Find Full Text PDF

Forest fire emission estimates over South Asia using Suomi-NPP VIIRS-based thermal anomalies and emission inventory.

Environ Pollut

February 2025

Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India; DST-Mahamana Centre of Excellence in Climate Change Research, Banaras Hindu University, Varanasi, India. Electronic address:

Emission estimates of carbon-containing greenhouse gases (CO, CH) and aerosols (PM) were made from forest fire across South Asia using Visible Infrared Imaging Radiometer Suite (VIIRS) based thermal anomalies and fire products. VIIRS 375 m I-band active fire product was selectively retrieved for the years 2012-2021 over forest cover across South Asia. Annual incidence of fire events across South Asia was 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!