Water oxidation in alkaline medium was efficiently catalyzed by the self-assembled molecular hybrids of CoS-DNA that had 20 times lower Co loading than the commonly used loading. The morphological outcome was directed by varying the molar ratio of metal precursor Co(Ac) and DNA and three different sets of CoS-DNA molecular hybrids, viz. CoS-DNA(0.036), CoS-DNA(0.06), and CoS-DNA(0.084) were prepared. These morphologically distinct hybrids had shown similar electrocatalytic behavior, because of the fact that they all contained the same cobalt content. The CoS-DNA(0.036), CoS-DNA(0.06), and CoS-DNA(0.084) required very low overpotentials of 350, 364, and 373 mV at a current density of 10 mA cm (1 M KOH), respectively. The advantages of lower overpotential, lower Tafel slope (42.7 mV dec), high Faradaic efficiency (90.28%), high stability and reproducibility after all, with a lower cobalt loading, have certainly shown the worth of these molecular hybrids in large-scale water oxidation. Moreover, since DNA itself a good binder, CoS-DNA molecular hybrids were directly casted on substrate electrodes and used after drying. It also showed minimum intrinsic resistance as DNA is a good ionic and electronic conductor. Besides, the present method may also be extended for the preparation of other active electrocatalysts for water splitting.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b00855DOI Listing

Publication Analysis

Top Keywords

molecular hybrids
20
water oxidation
12
self-assembled molecular
8
hybrids cos-dna
8
cobalt content
8
cos-dna molecular
8
cos-dna0036 cos-dna006
8
cos-dna006 cos-dna0084
8
dna good
8
hybrids
6

Similar Publications

The OsMAPK6-OsWRKY72 module positively regulates rice leaf angle through brassinosteroid signals.

Plant Commun

December 2024

Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan' Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Leaf angle is a major agronomic trait that determines plant architecture, which directly affects rice planting density, photosynthetic efficiency, and yield. The plant phytohormones brassinosteroids (BRs) and the MAPK signaling cascade are known to play crucial roles in regulating the leaf angle, but the underlying molecular mechanisms are not fully understood. Here, we report a rice WRKY family transcription factor gene, OsWRKY72, which positively regulates leaf angle by affecting lamina joint development and BR signaling.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment.

View Article and Find Full Text PDF

Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties.

View Article and Find Full Text PDF

The CEL-HYB1 hybrid allele of the carboxyl ester lipase (CEL) gene and its pseudogene (CELP) has been associated with chronic pancreatitis (CP). Recent work indicated that amino acid positions 488 and 548 in CEL-HYB1 determined pathogenicity. Haplotype Thr488-Ile548 was associated with CP while haplotypes Thr488-Thr548 and Ile488-Thr548 were benign.

View Article and Find Full Text PDF

Background: Recent evidence suggests brain-first Parkinson's disease (PD) may start from the olfactory system, indicating potential inhalational exposure to causal agents. We investigated the impact of long-term exposure to various air pollutants on PD incidence using both single- and multi-pollutant models to account for interactions between pollutants.

Methods: This retrospective population study used data from Taiwan's National Health Insurance Research Database (2006 and 2018) and included individuals aged 40-65 without PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!