Interactions between resource and consumer species result in complex ecological networks. The overall structure of these networks is often stable in space and time, but little is known about the temporal stability of the functional roles of consumer species in these networks. We used a trait-based approach to investigate whether consumers (frugivorous birds) show similar degrees of functional specialisation on resources (plants) in ecological networks across seasons. We additionally tested whether closely related bird species have similar degrees of functional specialisation and whether birds that are functionally specialised on specific resource types within a season are flexible in switching to other resource types in other seasons. We analysed four seasonal replicates of two species-rich plant-frugivore networks from the tropical Andes. To quantify fruit preferences of frugivorous birds, we projected their interactions with plants into a multidimensional plant trait space. To measure functional specialisation of birds, we calculated a species' functional niche breadth (the extent of seasonal plant trait space utilised by a particular bird) and functional originality (the extent to which a bird species' fruit preference functionally differs from those of other species in a seasonal network). We additionally calculated functional flexibility, i.e. the ability of bird species to change their fruit preference across seasons in response to variation in plant resources. Functional specialisation of bird species varied more among species than across seasons, and phylogenetically similar bird species showed similar degrees of functional niche breadth (phylogenetic signal λ = 0·81) and functional originality (λ = 0·89). Additionally, we found that birds with high functional flexibility across seasons had narrow functional niche breadth and high functional originality per season, suggesting that birds that are seasonally specialised on particular resources are most flexible in switching to other fruit resources across seasons. The high flexibility of functionally specialised bird species to switch seasonally to other resources challenges the view that consumer species rely on functionally similar resources throughout the year. This flexibility of consumer species may be an important, but widely neglected mechanism that could potentially stabilise consumer-resource networks in response to human disturbance and environmental change.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.12683DOI Listing

Publication Analysis

Top Keywords

bird species
20
consumer species
16
functional specialisation
16
functional
13
functionally specialised
12
degrees functional
12
functional niche
12
niche breadth
12
functional originality
12
species
11

Similar Publications

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Isospora tiedetopetei n. sp. (Chromista: Apicomplexa: Eimeriidae) from black-goggled tanagers Trichothraupis melanops (Vieillot, 1818) (Passeriformes: Thraupidae: Tachyphoninae) in South America.

Parasitol Int

January 2025

Departamento de Biologia Animal, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465 km 7, 23897-000 Seropédica, Rio de Janeiro, Brazil.

Black-goggled tanagers Trichothraupis melanops (Vieillot, 1818) are passerine birds commonly observed in the Brazilian Atlantic Forest, Argentina and Paraguay. Tanagers are among the passerines with the highest prevalence and density of coccidian parasites, mainly due to their frugivorous feeding habits that favor fecal-oral transmission. In this context, the current study identifies a new species of Isospora Schneider, 1881 parasitizing black-goggled tanagers captured in the Itatiaia National Park, a protected area with a high degree of vulnerability in Southeastern Brazil.

View Article and Find Full Text PDF

Bridging the fields of cognition and birdsong with corvids.

Curr Opin Neurobiol

January 2025

Animal Physiology, Institute of Neurobiology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany. Electronic address:

Corvids, readily adaptable across social and ecological contexts, successfully inhabit almost the entire world. They are seen as highly intelligent birds, and current research examines their cognitive abilities. Despite being songbirds with a complete 'song system', corvids have historically received less attention in studies of song production, learning, and perception compared to non-corvid songbirds.

View Article and Find Full Text PDF

This study aimed to investigate the macroscopic, light microscopic (LM) and scanning electron microscopic (SEM) characteristics of the pecten oculi in common kestrels (Falco tinnunculus). A total of six eyeballs from three common kestrels were used as the study material. The examination revealed that the bulbus oculi was spherical in shape and its diameter exceeded the axial-global length.

View Article and Find Full Text PDF

Middle Ear Mechanics in the Barn Owl.

J Morphol

January 2025

Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA.

The barn owl is a common research subject in auditory science due to its exceptional capacity for high frequency hearing and superb sound source localization capabilities. Despite longstanding interest in the auditory performance of barn owls, the function of its middle ear has attracted remarkably little attention. Here, we report the middle ear transfer function measured by laser Doppler vibrometry and direct measurements of inner ear pressures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!