To obtain new insights into community compositions of hyperthermophilic microorganisms, defined as having optimal growth temperatures of 80 °C and above, sediment and water samples were taken from two shallow marine hydrothermal vents (I and II) with temperatures of 100 °C at Vulcano Island, Italy. A combinatorial approach of denaturant gradient gel electrophoresis (DGGE) and metagenomic sequencing was used for microbial community analyses of the samples. In addition, enrichment cultures, growing anaerobically on selected polysaccharides such as starch and cellulose, were also analyzed by the combinatorial approach. Our results showed a high abundance of hyperthermophilic archaea, especially in sample II, and a comparable diverse archaeal community composition in both samples. In particular, the strains of the hyperthermophilic anaerobic genera Staphylothermus and Thermococcus, and strains of the aerobic hyperthermophilic genus Aeropyrum, were abundant. Regarding the bacterial community, ε-Proteobacteria, especially the genera Sulfurimonas and Sulfurovum, were highly abundant. The microbial diversity of the enrichment cultures changed significantly by showing a high dominance of archaea, particularly the genera Thermococcus and Palaeococcus, depending on the carbon source and the selected temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00792-017-0938-yDOI Listing

Publication Analysis

Top Keywords

shallow marine
8
marine hydrothermal
8
hydrothermal vents
8
vulcano island
8
combinatorial approach
8
enrichment cultures
8
diversity bacteria
4
bacteria archaea
4
archaea shallow
4
vents vulcano
4

Similar Publications

Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels.

View Article and Find Full Text PDF

Decoding the drivers of variability in chlorophyll-a concentrations in the Pearl River estuary: Intra-annual and inter-annual analyses of environmental influences.

Environ Res

January 2025

School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China.

Temporal variability and associated driving factors of sea surface chlorophyll-a concentration (Chl-a) in coastal waters have been extensively studied worldwide; however, the importance and spatial heterogeneity of these driving factors remain insufficiently documented. This study addressed this gap by investigating the Pearl River Estuary (PRE) from August 2002 to June 2016, using long-term remote sensing-derived data of Chl-a and potential driving factors, including total suspended solids (TSS), precipitation, photosynthetically active radiation (PAR), and sea surface temperature (SST); and in situ measurements of potential driving factors, including river discharge, wind speed, alongshore wind (u), cross-shore wind (v), and tidal range. A pixel-by-pixel correlation analysis was conducted to preliminarily examine the relationships between these potential driving factors and Chl-a.

View Article and Find Full Text PDF

Niche Partitioning and Intraspecific Variation of Thaumarchaeota in Deep Ocean Sediments.

Environ Microbiol

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep.

View Article and Find Full Text PDF

The Winam Gulf in the Kenyan region of Lake Victoria experiences prolific, year-round cyanobacterial harmful algal blooms (cyanoHABs) which pose threats to human, livestock, and ecosystem health. To our knowledge, there is limited molecular research on the gulf's cyanoHABs, and thus, the strategies employed for survival and proliferation by toxigenic cyanobacteria in this region remain largely unexplored. Here, we used metagenomics to analyze the Winam Gulf's cyanobacterial composition, function, and biosynthetic potential.

View Article and Find Full Text PDF

Transition from multi-year La Niña to strong El Niño rare but increased under global warming.

Sci Bull (Beijing)

December 2024

NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.

El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!