Adult-derived human liver stem/progenitor cells (ADHLSCs) are, nowadays, developed as therapeutic medicinal product for the treatment of liver defects. In this study, the impact of hepatogenic differentiation and inflammation priming on the ADHLSCs' immune profile was assessed in vitro and compared to that of mature hepatocytes. The constitutive immunological profile of ADHLSCs was greatly different from that of hepatocytes. Differences in the expression of the stromal markers CD90 and CD105, adhesion molecules CD44 and CD49e, immunoregulatory molecules CD73 and HO-1, and NK ligands CD112 and CD155 were noted. While they globally preserved their immunological profile in comparison to undifferentiated counterparts, differentiated ADHLSCs showed a significant downregulation of CD200 expression as in hepatocytes. This was mainly induced by signals issued from EGF and OSM. On the other hand, the impact of inflammation was quite similar for all studied cell populations with an increased expression level of CD54 and CD106 and induction of that of CD40 and CD274. In conclusion, our immune profiling study suggests CD200 as a key factor in regulating the immunobiology of differentiated ADHLSCs. A better understanding of the molecular and physiological events related to such marker could help in designing the optimal conditions for an efficient therapeutic use of ADHLSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405586 | PMC |
http://dx.doi.org/10.1155/2017/2679518 | DOI Listing |
Int J Mol Sci
January 2025
Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
Tooth/skeletal dysplasia, such as hypophosphatasia (HPP), has been extensively studied. However, there are few definitive treatments for these diseases owing to the lack of an in vitro disease model. Cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) demonstrate a pathological phenotype.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
December 2024
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
Transfusion
October 2024
Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands.
Sex differences and age-related changes in the human heart at the tissue, cell, and molecular level have been well-documented and many may be relevant for cardiovascular disease. However, how molecular programs within individual cell types vary across individuals by age and sex remains poorly characterized. To better understand this variation, we performed single-nucleus combinatorial indexing (sci) ATAC- and RNA-Seq in human heart samples from nine donors.
View Article and Find Full Text PDFDiscov Med
June 2024
Department of Liver Disease, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!