For the normal development of pregnancy, a balance between immune tolerance and defense is crucial. However, the mechanisms mediating such a balance are not fully understood. CD83 is a transmembrane protein whose expression has been linked to anti-inflammatory functions of T and B cells. The soluble form of CD83, released by cleavage of the membrane-bound protein, has strong anti-inflammatory properties and was successfully tested in different mouse models. It is assumed that this molecule contributes to the establishment of immune tolerance. Therefore, we postulated that the expression of CD83 is crucial for immune tolerance during pregnancy in mice. Here, we demonstrated that the membrane-bound form of CD83 was upregulated in T and B cells during allogeneic murine pregnancies. An upregulation was also evident in the main splenic B cell subtypes: marginal zone, follicular zone, and transitional B cells. We also showed that there was an augmentation in the number of CD83 cells toward the end of pregnancy within splenic B and CD4 T cells, while CD83 dendritic cells were reduced in spleen and inguinal lymph nodes of pregnant mice. Additionally, B lymphocytes in late-pregnancy presented a markedly higher sensitivity to LPS in terms of CD83 expression and sCD83 release. Progesterone induced a dosis-dependent upregulation of CD83 on T cells. Our data suggest that the regulation of CD83 expression represents a novel pathway of fetal tolerance and protection against inflammatory threats during pregnancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405069 | PMC |
http://dx.doi.org/10.3389/fimmu.2017.00486 | DOI Listing |
CNS Drugs
January 2025
School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, 4222, Australia.
Background: Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany.
The formation and differentiation of mature, motile male germ cells, which can fertilize the egg and ensure successful implantation and development of a healthy embryo, are essential functions of the testis and epididymis. Spermatogenesis is a complex, multistep process that results in the formation of motile haploid gametes, requiring an immunoregulatory environment to maintain tolerance to developing neo-antigens. Different cell types (Sertoli cells, macrophages), immunoregulatory factors and tolerance mechanisms are involved.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.
Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.
View Article and Find Full Text PDFGut
January 2025
Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
Background: The immune suppression mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unknown, but preclinical studies have implicated macrophage-mediated immune tolerance. Hence, pathways that regulate macrophage phenotype are of strategic interest, with reprogramming strategies focusing on inhibitors of phosphoinositide 3-kinase-gamma (PI3Kγ) due to restricted immune cell expression. Inhibition of PI3Kγ alone is ineffective in PDAC, despite increased infiltration of CD8+ T cells.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!