Visual categorization plays an important role in fast and efficient information processing; still the neuronal basis of fast categorization has not been established yet. There are two main hypotheses known; both agree that primary, global impressions are based on the information acquired through the magnocellular pathway (MC). It is unclear whether this information is available through the MC that provides information (also) for the ventral pathway or through top-down mechanisms by connections between the dorsal pathway and the ventral pathway via the frontal cortex. To clarify this, a categorization task was performed by 48 subjects; they had to make decisions about objects' sizes. We created stimuli specific to the magno- and parvocellular pathway (PC) on the basis of their spatial frequency content. Transcranial direct-current stimulation was used to assess the role of frontal areas, a target of the MC. Stimulation did not bias the accuracy of decisions when stimuli optimized for the PC were used. In the case of stimuli optimized for the MC, anodal stimulation improved the subjects' accuracy in the behavioral test, while cathodal stimulation impaired accuracy. Our results support the hypothesis that fast visual categorization processes rely on top-down mechanisms that promote fast predictions through coarse information carried by MC via the orbitofrontal cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405140 | PMC |
http://dx.doi.org/10.3389/fnins.2017.00234 | DOI Listing |
Cogn Affect Behav Neurosci
January 2025
Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.
Increased intolerance of uncertainty (IU), or distress felt when encountering situations with unknown outcomes, occurs transdiagnostically across various forms of psychopathology and is targeted in therapeutic intervention. Increased intolerance of uncertainty shows overlap with symptoms of internalizing disorders, such as depression and anxiety, including negative affect and anxious apprehension (worry). While neuroanatomical correlates of IU have been reported, previous investigations have not disentangled the specific neural substrates of IU above and beyond any overlapping relationships with aspects of internalizing psychopathology.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Psychology, New York University
How the prefrontal cortex contributes to working memory remains controversial, as theories differ in their emphasis on its role in storing memories versus controlling their content. To adjudicate between these competing ideas, we tested how perturbations to the human (both sexes) lateral prefrontal cortex impact the storage and control aspects of working memory during a task that requires human subjects to allocate resources to memory items based on their behavioral priority. Our computational model made a strong prediction that disruption of this control process would counterintuitively improve memory for low-priority items.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519031, China. Electronic address:
Ethnopharmacological Relevance: Jieyu I Formula (JY-I) is an improved version of the classic formula "Sini San" documented in the books Shanghan Lun, which is known for regulating the liver and treating depression. However, the disturbance of neuronal signal transmission in the neural circuit of the brain is closely related to the occurrence of depression, yet its neural mechanism is still unclear.
Aim Of The Study: This study aimed to observe the antidepressant effect of JY-I on depressed mice induced by lipopolysaccharide and its underlying central nervous system mechanisms, focusing on the prefrontal cortex (PFC) to lateral habenular nucleus (LHb) neural circuit in the depressed mice model.
Physiol Behav
January 2025
Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3(rd) Avenue, Huntington, WV 25703, USA. Electronic address:
With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia. Electronic address:
Attention-Deficit/Hyperactivity Disorder (ADHD) is associated with an increased risk of Parkinson's disease (PD) and other synucleinopathies later in life. The severity of the ADHD phenotype may play a significant role in this association. There is no indication that any of the existing animal models can unify these disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!