AI Article Synopsis

  • Multidrug resistance (MDR) poses a significant challenge in treating malignant cancers, but RNA interference offers a solution by enabling efficient gene silencing in tumor cells.
  • A new "binary polymer" (LDL-NSC-SS-UA) was developed to co-deliver breast cancer resistance protein siRNA and paclitaxel (PTX), utilizing pH/redox sensitivity for targeted delivery to tumors.
  • In vivo studies showed that these micelles had enhanced tumor accumulation, controlled drug release in acidic environments, and demonstrated effective antitumor activity, suggesting their potential for overcoming MDR in cancer therapy.

Article Abstract

Multidrug resistance (MDR) is a major obstacle for the clinical therapy of malignant human cancers. The discovery of RNA interference provides efficient gene silencing within tumor cells for reversing MDR. In this study, a new "binary polymer" low-density lipoprotein--succinyl chitosan-cystamine-urocanic acid (LDL-NSC-SS-UA) with dual pH/redox sensitivity and targeting effect was synthesized for the co-delivery of breast cancer resistance protein small interfering RNA (siRNA) and paclitaxel (PTX). In vivo, the co-delivering micelles can accumulate in tumor tissue via the enhanced permeability and retention effect and the specific recognition and combination of LDL and LDL receptor, which is overexpressed on the surface of tumor cell membranes. The siRNA-PTX-loaded micelles inhibited gene and drug release under physiological conditions while promoting fast release in an acid microenvironment or in the presence of glutathione. The micelles escaped from the lysosome through the proton sponge effect. Additionally, the micelles exhibited superior antitumor activity and downregulated the protein and mRNA expression levels of breast cancer resistance protein in MCF-7/Taxol cells. The biodistribution and antitumor studies proved that the siRNA-PTX-loaded micelles possessed prolonged circulation time with a remarkable tumor-targeting effect and effectively inhibited tumor growth. Therefore, the novel dual pH/redox-sensitive polymers co-delivering siRNA and PTX with excellent biocompatibility and effective reversal of MDR demonstrate a considerable potential in cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413542PMC
http://dx.doi.org/10.2147/IJN.S126310DOI Listing

Publication Analysis

Top Keywords

breast cancer
8
cancer resistance
8
resistance protein
8
sirna-ptx-loaded micelles
8
micelles
6
tumor
5
low-density lipoprotein-coupled
4
lipoprotein-coupled micelles
4
micelles reduction
4
reduction dual
4

Similar Publications

One of the main challenges in breast cancer management is health system literacy to provide optimal and timely diagnosis and treatments within complex and multidisciplinary health system environments. Digitalised patient navigation programs have been developed and found to be helpful in high- and low-resource settings, but gaps remain in finding cost-effective navigation in the public sector in Malaysia, where resources are scarce and unstable. Hence, we set out to develop a virtual patient navigation application for breast cancer patients to enhance knowledge about cancer diagnosis and treatments and provide a tracking mechanism to ensure quality care.

View Article and Find Full Text PDF

Introduction: Detection of mutations in primary tumors and liquid biopsy samples is of increasing importance for treatment decisions and therapy resistance in many types of cancer. The aim of the present study was to directly compare the efficacy of a relatively inexpensive ultrasensitive real-time PCR with the well-established and highly sensitive technology of ddPCR for the detection of the three most common hotspot mutations of , in exons 9 and 20, that are all of clinical importance in various types of cancer.

Patients And Methods: We analyzed 42 gDNAs from primary tumors (FFPEs), 29 plasma-cfDNA samples, and 29 paired CTC-derived gDNAs, all from patients with ER+ metastatic breast cancer, and plasma from 10 healthy donors.

View Article and Find Full Text PDF

Carbon dot (CD)-based theranostics offers a promising approach for breast cancer (BC) treatment, integrating ultra-localized chemo-photothermal effects to address chemoresistance and enhance therapeutic control. Herein, the development of a targeted theranostic nanosystem for the chemo-phototherapy of breast cancer is described. Fluorescent and biocompatible CDs were passivated with 1,2-bis(3-aminopropylamino)ethane (bAPAE) and decorated with the targeting agent folic acid (FA) through conjugation with a PEG spacer.

View Article and Find Full Text PDF

Activation of PLCβ enzymes by G and G proteins is a common mechanism to trigger cytosolic Ca increase. We and others reported that G inhibitor FR900358 (FR) can inhibit both and G - and, surprisingly, G -mediated intracellular Ca mobilization. Thus, the G -G -PLCβ-Ca signaling axis depends entirely on the presence of active G , which reasonably explained FR-inhibited G -induced Ca release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!