A central question in the evolution of brain development is whether species differ in rates of brain growth during fetal neurogenesis. Studies of neonatal data have found allometric evidence for brain growth rate differences according to physiological variables such as relative metabolism and placental invasiveness, but these findings have not been tested against fetal data directly. Here, we measure rates of exponential brain growth acceleration in 10 eutherian mammals, two marsupials, and two birds. Eutherian brain acceleration exhibits minimal variation relative to body and visceral organ growth, varies independently of correlated growth patterns in other organs, and is unrelated to proposed physiological constraints such as metabolic rate or placental invasiveness. Brain growth rates in two birds overlap with eutherian variation, while marsupial brain growth is exceptionally slow. Peak brain growth velocity is linked in time with forebrain myelination and eye opening, reliably separates altricial species born before it from precocial species born afterwards, and is an excellent predictor of adult brain size ( = 0.98). Species with faster body growth exhibit larger relative brain size in early ontogeny, while brain growth is unrelated to allometric measures. These findings indicate a surprising conservation of brain growth rates during fetal neurogenesis in eutherian mammals, clarify sources of variation in neonatal brain size, and suggest that slow body growth rates cause species to be more encephalized at birth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443945 | PMC |
http://dx.doi.org/10.1098/rspb.2017.0219 | DOI Listing |
BMC Genomics
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.
View Article and Find Full Text PDFClin Breast Cancer
January 2025
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA; Harvard Medical School, Boston, MA.
Background: We sought to evaluate prognostic factors in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) and their relationship with short- and long-term overall survival (OS).
Methods: Using the Surveillance, Epidemiology, and End Results (SEER) database, we evaluated patients with de novo HER2-positive MBC diagnosed from 2010 to 2018. Univariate analyses were performed to determine effect of each variable on OS.
Biochim Biophys Acta Rev Cancer
January 2025
Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; China Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China. Electronic address:
Tumors are diseases caused by abnormal cell division and growth, which can be life-threatening if not treated properly. Serpin inhibitors play a crucial role in regulating pathophysiological process and are promising drug targets. Kallistatin (SERPINA4) and Pigment Epithelium-Derived Factor (PEDF, SERPINF1) are two serpins that lack protease inhibitory activity but are abundant in blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!