The histone methyltransferase EZH2 is required for B and T cell development; however, the molecular mechanisms underlying this requirement remain elusive. In a murine model of lymphoid-specific EZH2 deficiency we found that EZH2 was required for proper development of adaptive, but not innate, lymphoid cells. In adaptive lymphoid cells EZH2 prevented the premature expression of and the consequent stabilization of p53, an effector of the pre-Ag receptor checkpoints. Deletion of in EZH2-deficient lymphocytes prevented p53 stabilization, extended lymphocyte survival, and restored differentiation resulting in the generation of mature B and T lymphocytes. Our results uncover a crucial role for EZH2 in adaptive lymphocytes to control the developmental timing of effectors of the pre-Ag receptor checkpoints.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527689PMC
http://dx.doi.org/10.4049/jimmunol.1700319DOI Listing

Publication Analysis

Top Keywords

receptor checkpoints
12
developmental timing
8
timing effectors
8
ezh2 required
8
lymphoid cells
8
pre-ag receptor
8
ezh2
6
ezh2 regulates
4
regulates developmental
4
effectors pre-antigen
4

Similar Publications

Previous studies have demonstrated the safety and efficacy of a live-attenuated glycoprotein G (gG) deletion mutant vaccine strain of ILTV (∆gG-ILTV). In the current study, transcriptional profiles of chicken tracheal organ cultures (TOCs), 24 h post inoculation with ∆gG-ILTV or the gG-expressing parent wild-type strain, CSW-1 ILTV were explored and compared with the mock-infected TOCs using RNA-seq analysis. Transcriptomes of the vaccine and wild-type ILTV were also compared with each other.

View Article and Find Full Text PDF

VISTA is a key immune checkpoint receptor under investigation for cancer immunotherapy; however, its signaling mechanisms remain unclear. Here we identify a conserved four amino acid (NPGF) intracellular motif in VISTA that suppresses cell proliferation by constraining cell-intrinsic growth receptor signaling. The NPGF motif binds to the adapter protein NUMB and recruits Rab11 endosomal recycling machinery.

View Article and Find Full Text PDF

Risk Factors Predicting Outcomes in Advanced Upper Gastrointestinal Cancers Treated With Immune Checkpoint Inhibitors.

Gastroenterology Res

December 2024

Division of Medical Oncology, Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.

Background: Immune checkpoint inhibitors (ICIs) have moved to the frontline in recent years to manage upper gastrointestinal (UGI) tumors, such as esophageal and gastric cancers. This retrospective review sheds light on real-world data on ICI-treated UGI tumors to identify risk factors (clinical and pathological) impacting the outcome other than traditional biomarkers (programmed cell death ligand 1 (PD-L1) or microsatellite instability status).

Methods: Patients with UGI tumors who received at least one dose of ICI for stage IV or recurrent disease between January 1, 2015, and July 31, 2021, at The Ohio State University were included in the study.

View Article and Find Full Text PDF

Background And Aims: Refractory celiac disease type II (RCDII) is characterized by a clonally expanded aberrant cell population in the small intestine. The role of other tissue-resident immune subsets in RCDII is unknown. Here, we characterized CD8 and CD4 T cells in RCDII duodenum at the single-cell level and .

View Article and Find Full Text PDF

Targeted Delivery of BMS-1166 for Enhanced Breast Cancer Immunotherapy.

Int J Nanomedicine

January 2025

College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.

Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!