The phytochemical profiles and antioxidant activity of free, soluble-conjugated, and bound fractions of brown rice and its processed products (textured rice, cooked rice and rice noodle) were studied. Nineteen phenolic acids were identified. Trans-ferulic acid was the most abundant monomeric phenolic acid with trans-trans-8-O-4' diferulic acid being most abundant diferulic acid. Processing increased the content of free phenolic acids, but decreased the content of soluble-conjugated phenolic acids. The content of bound phenolic acids was increased by improved extrusion cooking technology and cooking, but not affected by rice noodle extrusion. The total phenolic contents and antioxidant activities of free and soluble-conjugated fractions were decreased after processing, whereas those of bound fraction were increased by improved extrusion cooking technology and cooking, but not affected by rice noodle extrusion. Results indicated that whole foods designed for reducing chronic disease risk need to consider the effects of processing on phytochemical profiles and antioxidant activity of whole grains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2017.03.148 | DOI Listing |
Animal Model Exp Med
January 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh.
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs.
View Article and Find Full Text PDFPlant Genome
March 2025
Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.
View Article and Find Full Text PDFJ Taibah Univ Med Sci
December 2024
Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
Objective: Concerns over the increasing number of obese individuals and the associated health risks have prompted therapeutic option explorations. Similarly, this study aimed to establish fruit extract (SCFE) anti-adipogenic attributes in 3T3-L1 cells.
Methods: The polyphenolic compounds in SCFE were identified with Reverse phase-high performance liquid chromatography (RP-HPLC).
Annu Rev Food Sci Technol
January 2025
1Department of Food Science and Technology, University of California, Davis, Davis, California, USA; email:
Lacto-fermented fruits and vegetables (FVs) such as kimchi, sauerkraut, and fermented olives and nonalcoholic juices have a long history as dietary staples. Herein, the production steps and microbial ecology of lacto-fermented FVs are discussed alongside findings from human and laboratory studies investigating the health benefits of these foods. Lacto-fermented FVs are enriched in bioactive compounds, including lactic and acetic acids, phenolic compounds, amino acid derivatives such as indole-3-lactic acid, phenyl-lactic acid, γ-aminobutyric acid, and bacteriocins, and beneficial live microbes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!