Writing proficiency is heavily based on acquisition and development of self-regulation and transcription skills. The present study examined the effects of combining transcription training with a self-regulation intervention (self-regulated strategy development [SRSD]) in Grade 2 (ages 7-8). Forty-three students receiving self-regulation plus transcription (SRSD+TR) intervention were compared with 37 students receiving a self-regulation only (SRSD only) intervention and 39 students receiving the standard language arts curriculum. Compared with control instruction, SRSD instruction-with or without transcription training-resulted in more complex plans; longer, better, and more complete stories; and the effects transferred to story written recall. Transcription training produced an incremental effect on students' composing skills. In particular, the SRSD+TR intervention increased handwriting fluency, spelling accuracy for inconsistent words, planning and story completeness, writing fluency, clause length, and burst length. Compared with the SRSD-only intervention, the SRSD+TR intervention was particularly effective in raising the writing quality of poorer writers. This pattern of findings suggests that students benefit from writing instruction coupling self-regulation and transcription training from very early on. This seems to be a promising instructional approach not only to ameliorate all students' writing ability and prevent future writing problems but also to minimize struggling writers' difficulties and support them in mastering writing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0022219417708170 | DOI Listing |
J Biol Chem
December 2024
Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo 255300, China.
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from pre-implantation and post-implantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BAF chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
Background: Nasopharyngeal carcinoma (NPC) is a type of malignant tumors commonly found in Southeast Asia and China, with insidious onset and clinical symptoms. N6-methyladenosine (m6A) modification significantly contributes to tumorigenesis and progression by altering RNA secondary structure and influencing RNA-protein binding at the transcriptome level. However, the mechanism and role of abnormal m6A modification in nasopharyngeal carcinoma remain unclear.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, Tianjin, China.
Unlabelled: As toxic pollutants, -alkanes are pervasively distributed in most environmental matrices. Although the alkane monooxygenase AlmA plays a critical role in the metabolic pathway of solid long-chain -alkanes (≥C) that are extremely difficult to degrade, the mechanism regulating this process remains unclear. Here, we characterized the function of AlmA in RAG-1, which was mainly involved in the degradation of long-chain -alkanes (C-C), among which, -C induced the promoter activity most.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that bind to the PIWI subclass of the Argonaute protein family and are essential for maintaining germline integrity. Initially discovered in , PIWI proteins safeguard piRNAs, forming ribonucleoprotein (RNP) complexes, crucial for regulating gene expression and genome stability, by suppressing transposable elements (TEs). Recent insights revealed that piRNAs and PIWI proteins, known for their roles in germline maintenance, significantly influence mRNA stability, translation and retrotransposon silencing in both stem cells and bodily tissues.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The proliferation of tumors is not merely self-regulated by the cancer cells but is also intrinsically connected to the tumor microenvironment (TME). Within this complex TME, cancer-associated fibroblasts (CAFs) are pivotal in the modulation of tumor onset and progression. Rich signaling interactions exist between CAFs and tumor cells, which are crucial for tumor regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!