The determination of food web structures using Ecological Network Analysis (ENA) is a helpful tool to get insight into complex ecosystem processes. The intertidal area of the Wadden Sea is structured into diverse habitat types which differ in their ecological functioning. In the present study, six different intertidal habitats (i.e. cockle field, razor clam field, mud flat, mussel bank, sand flat and seagrass meadow) were analyzed using ENA to determine similarities and characteristic differences in the food web structure of the systems. All six systems were well balanced between their degree of organization and their robustness. However, they differed in their detailed features. The cockle field and the mussel bank exhibited a strong dependency on external imports. The razor clam field appeared to be a rather small system with low energy transfer. In the mud flat microphytobenthos was used as a main food source and the system appeared to be sensitive to perturbations. Bird predation was the most pronounced in the sand flat and the seagrass meadow and led to an increase in energy transfer and parallel trophic cycles in these habitats. Habitat diversity appears to be an important trait for the Wadden Sea as each subsystem seems to have a specific role in the overall functioning of the entire ecosystem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425016 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176381 | PLOS |
Nature
January 2025
SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea.
View Article and Find Full Text PDFGrey mullets (family Mugilidae) are widespread across coastal, brackish, and freshwater habitats, and have supported fisheries for millennia. Despite their global distribution and commercial value, little is known about their movement ecology and its role in the co-existence of sympatric mullet species. Gaps in knowledge about migratory behaviour, seasonal occurrence, and movement scales have also impeded effective management, highlighting the need for further research.
View Article and Find Full Text PDFPeerJ
December 2024
Benthic Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Bremen, Germany.
Sediment reworking by benthic infauna, namely bioturbation, is of pivotal importance in expansive soft-sediment environments such as the Wadden Sea. Bioturbating fauna facilitate ecosystem functions such as bentho-pelagic coupling and sediment nutrient remineralization capacities. Yet, these benthic fauna are expected to be profoundly affected by current observed rising sea temperatures.
View Article and Find Full Text PDFConserv Biol
December 2024
Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
Mar Pollut Bull
December 2024
Fluids and Flows group and J.M. Burgers Center for Fluid Dynamics, Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands. Electronic address:
Several coastal regions require operational forecast systems for predicting the transport of pollutants released during marine accidents. In response to this need, surrogate models offer cost-effective solutions. Here, we propose a surrogate modeling method for predicting the residual transport of particle patches in coastal environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!