A rhodopsin in the brain functions in circadian photoentrainment in Drosophila.

Nature

Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA.

Published: May 2017

Animals partition their daily activity rhythms through their internal circadian clocks, which are synchronized by oscillating day-night cycles of light. The fruitfly Drosophila melanogaster senses day-night cycles in part through rhodopsin-dependent light reception in the compound eye and photoreceptor cells in the Hofbauer-Buchner eyelet. A more noteworthy light entrainment pathway is mediated by central pacemaker neurons in the brain. The Drosophila circadian clock is extremely sensitive to light. However, the only known light sensor in pacemaker neurons, the flavoprotein cryptochrome (Cry), responds only to high levels of light in vitro. These observations indicate that there is an additional light-sensing pathway in fly pacemaker neurons. Here we describe a previously uncharacterized rhodopsin, Rh7, which contributes to circadian light entrainment by circadian pacemaker neurons in the brain. The pacemaker neurons respond to violet light, and this response depends on Rh7. Loss of either cry or rh7 caused minor defects in photoentrainment, whereas loss of both caused profound impairment. The circadian photoresponse to constant light was impaired in rh7 mutant flies, especially under dim light. The demonstration that Rh7 functions in circadian pacemaker neurons represents, to our knowledge, the first role for an opsin in the central brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476302PMC
http://dx.doi.org/10.1038/nature22325DOI Listing

Publication Analysis

Top Keywords

pacemaker neurons
24
light
10
functions circadian
8
day-night cycles
8
light entrainment
8
neurons brain
8
circadian pacemaker
8
circadian
7
pacemaker
6
neurons
6

Similar Publications

Among control methods for robotic exoskeletons, biologically inspired control based on central pattern generators (CPGs) offer a promising approach to generate natural and robust walking patterns. Compared to other approaches, like model-based and machine learning-based control, the biologically inspired control provides robustness to perturbations, requires less computational power, and does not need system models or large learning datasets. While it has shown effectiveness, a comprehensive evaluation of its user experience is lacking.

View Article and Find Full Text PDF

New techniques for largescale neural recordings from diverse animals are reshaping comparative systems neuroscience. This growth necessitates fresh conceptual paradigms for comparing neural circuits and activity patterns. Here, we take a systems neuroscience approach to early neural evolution, emphasizing the importance of considering nervous systems as multiply modulated, continuous dynamical systems.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

Generative models for sequential dynamics in active inference.

Cogn Neurodyn

December 2024

Institute of Cognitive Sciences and Technologies, National Research Council, Via S. Martino Della Battaglia, 44, 00185 Rome, Italy.

A central theme of theoretical neurobiology is that most of our cognitive operations require processing of discrete sequences of items. This processing in turn emerges from continuous neuronal dynamics. Notable examples are sequences of words during linguistic communication or sequences of locations during navigation.

View Article and Find Full Text PDF

Zebrafish Dark-Dependent Behavior Requires Phototransduction by the Pineal Gland.

J Pineal Res

November 2024

School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.

Located dorsally underneath a thin translucent skull in many teleosts, the pineal gland is a photoreceptive organ known as a key element of the circadian clock system. Nevertheless, the presence of additional routes of photoreception presents a challenge in determining its specific roles in regulating photic-related behavior. Here, we show the importance of the pineal gland in mediating a prolonged motor response of zebrafish larvae to sudden darkness, both as a photodetector and as a circadian pacemaker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!