Anti-cancer agents exert therapeutic effects by damaging DNA. Unfortunately, DNA polymerases can effectively replicate the formed DNA lesions to cause drug resistance and create more aggressive cancers. To understand this process at the cellular level, we developed an artificial nucleoside that visualizes the replication of damaged DNA to identify cells that acquire drug resistance through this mechanism. Visualization is achieved using "click" chemistry to covalently attach azide-containing fluorophores to the ethynyl group present on the nucleoside analog after its incorporation opposite damaged DNA. Flow cytometry and microscopy techniques demonstrate that the extent of nucleotide incorporation into genomic DNA is enhanced by treatment with DNA damaging agents. In addition, this nucleoside analog inhibits translesion DNA synthesis and synergizes the therapeutic activity of certain anti-cancer agents such as temozolomide. The combined diagnostic and therapeutic activities of this synthetic nucleoside analog represent a new paradigm in personalized medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522278PMC
http://dx.doi.org/10.18632/oncotarget.17254DOI Listing

Publication Analysis

Top Keywords

drug resistance
12
nucleoside analog
12
dna
10
translesion dna
8
dna synthesis
8
dna damaging
8
damaging agents
8
anti-cancer agents
8
damaged dna
8
inhibiting translesion
4

Similar Publications

Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).

Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.

View Article and Find Full Text PDF

Background: Cancer remains a leading cause of death worldwide. Environmental factors, specifically endocrine-disrupting chemicals (EDCs), like phthalates, are increasingly being linked to cancer development. Phthalates, widely used in consumer products, can activate the aryl hydrocarbon receptor (AhR).

View Article and Find Full Text PDF

Maturation inhibitors (MIs) block HIV-1 maturation by preventing the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a first-in-class MI, displayed sub-optimal efficacy in clinical trials due to presence of SP1:V7A polymorphism in the Gag protein.This polymorphism is inherently present in HIV-1 subtype C and conferred resistance to BVM.

View Article and Find Full Text PDF

Dynamic analysis of the epidemiology and pathogen distribution of bronchoalveolar lavage fluid in children with severe pulmonary infection: a retrospective study.

Ital J Pediatr

January 2025

Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan, China.

Background: Severe pulmonary infection is the primary cause of death in children aged < 5 years. The early identification of pathogenic bacteria and targeted anti-infective therapies can significantly improve the prognosis of children with severe infections. This study aims to provide a reference for the rational use of antibiotics at an early stage in children with severe pulmonary infections.

View Article and Find Full Text PDF

Background: Carbapenem-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA) are among WHO's priority pathogens with antimicrobial resistance (AMR). Studies suggest potential impacts of the COVID-19-pandemic on AMR. We described changes in AMR incidence and epidemiology in Germany during the COVID-19-pandemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!