AI Article Synopsis

Article Abstract

This study is an attempt to make a step forward to implement the very immature concept of pumpless transportation of liquid into a real miniaturized device or lab-on-chip (LOC) on a plastic substrate. "Inert" plastic materials such as polypropylene (PP) are used in a variety of biomedical applications but their surface engineering is very challenging. Here, it was demonstrated that with a facile innovative wettability patterning route using fluorosilanized UV-independent TiO nanoparticle coating it is possible to create wedge-shaped open microfluidic tracks on inert solid surfaces for low-cost biomedical devices (lab-on-plastic). For the future miniaturization and integration of the tracks into a device, a variety of characterization techniques were used to not only systematically study the surface patterning chemistry and topography but also to have a clear knowledge of its biological interactions and performance. The effect of such surface architecture on the biological performance was studied in terms of static/dynamic protein (bovine serum albumin) adsorption, bacterial (Staphylococcus aureus and Staphylococcus epidermidis) adhesion, cell viability (using HeLa and MCF-7 cancer cell lines as well as noncancerous human fibroblast cells), and cell patterning (Murine embryonic fibroblasts). Strategies are discussed for incorporating such a confined track into a diagnostic device in which its sensing portion is based on protein, microorganism, or cells. Finally, for the proof-of-principle of biosensing application, the well-known high-affinity molecular couple of BSA-antiBSA as a biological model was employed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b00537DOI Listing

Publication Analysis

Top Keywords

strategically designing
4
designing pumpless
4
pumpless microfluidic
4
device
4
microfluidic device
4
device "inert"
4
"inert" polypropylene
4
polypropylene substrate
4
substrate potential
4
potential application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!