{en} Over the past decades, much research has focused on understanding the critical factors for marine extinctions with the aim of preventing further species losses in the oceans. Although conservation and management strategies are enabling several species and populations to recover, others remain at low abundance levels or continue to decline. To understand these discrepancies, we used a published database on abundance trends of 137 populations of marine mammals worldwide and compiled data on 28 potentially critical factors for recovery. We then applied random forests and additive mixed models to determine which intrinsic and extrinsic factors are critical for the recovery of marine mammals. A mix of life-history characteristics, ecological traits, phylogenetic relatedness, population size, geographic range, human impacts, and management efforts explained why populations recovered or not. Consistently, species with lower age at maturity and intermediate habitat area were more likely to recover, which is consistent with life-history and ecological theory. Body size, trophic level, social interactions, dominant habitat, ocean basin, and habitat disturbance also explained some differences in recovery patterns. Overall, a variety of intrinsic and extrinsic factors were important for species' recovery, pointing to cumulative effects. Our results provide insight for improving conservation and management strategies to enhance recoveries in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cobi.12957 | DOI Listing |
Childs Nerv Syst
January 2025
Ph.D. Human Genetics Program, Molecular Biology and Genomics Department, Human Genetics Institute "Dr. Enrique Corona-Rivera", University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico.
Background: Central nervous system tumors (CNSTs) represent a significant oncological challenge in pediatric populations, particularly in developing regions where access to diagnostic and therapeutic resources is limited.
Methods: This research investigates the epidemiology, histological classifications, and survival outcomes of CNST in a cohort of pediatric patients aged 0 to 19 years within a 25-year retrospective study at the Civil Hospital of Guadalajara, Mexico, from 1999 to 2024.
Results: Data was analyzed from 273 patients who met inclusion criteria, revealing a higher incidence in males (51.
J Chem Inf Model
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFGenes Dev
December 2024
Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
Transcription factors (TFs) are indispensable for maintaining cell identity through regulating cell-specific gene expression. Distinct cell identities derived from a common progenitor are frequently perpetuated by shared TFs, yet the mechanisms that enable these TFs to regulate cell-specific targets are poorly characterized. We report that the TF NKX2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!