AI Article Synopsis

  • A new biometric cybersecurity system is proposed that uses the analysis of metabolites in skin secretions, specifically amino acids in sweat, for active authentication of mobile and wearable devices.
  • This system aims to create an amino acid profile for each individual user, which is capable of generating reliable signals for user identification.
  • Initial findings suggest that while the detection of amino acid levels has some noise challenges, more advanced techniques like multi-input biocatalytic processes could enhance accuracy and provide continuous authentication based on user-specific characteristics.

Article Abstract

We consider a new concept of biometric-based cybersecurity systems for active authentication by continuous tracking, which utilizes biochemical processing of metabolites present in skin secretions. Skin secretions contain a large number of metabolites and small molecules that can be targeted for analysis. Here we argue that amino acids found in sweat can be exploited for the establishment of an amino acid profile capable of identifying an individual user of a mobile or wearable device. Individual and combinations of amino acids processed by biocatalytic cascades yield physical (optical or electronic) signals, providing a time-series of several outputs that, in their entirety, should suffice to authenticate a specific user based on standard statistical criteria. Initial results, motivated by biometrics, indicate that single amino acid levels can provide analog signals that vary according to the individual donor, albeit with limited resolution versus noise. However, some such assays offer digital separation (into well-defined ranges of values) according to groups such as age, biological sex, race, and physiological state of the individual. Multi-input biocatalytic cascades that handle several amino acid signals to yield a single digital-type output, as well as continuous-tracking time-series data rather than a single-instance sample, should enable active authentication at the level of an individual.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201700044DOI Listing

Publication Analysis

Top Keywords

amino acids
12
skin secretions
12
amino acid
12
continuous tracking
8
active authentication
8
biocatalytic cascades
8
amino
6
individual
5
promises challenges
4
challenges continuous
4

Similar Publications

Introduction: Adjunctive therapies to treat OFF episodes resulting from long-term levodopa treatment in Parkinson disease (PD) are hampered by safety and tolerability issues. Istradefylline offers an alternative mechanism (adenosine A2A receptor antagonist) and therefore potentially improved tolerability.

Methods: A systematic review of PD adjuncts published in 2011 was updated to include randomized controlled trials published from January 1, 2010-April 15, 2019.

View Article and Find Full Text PDF

Lacto-Fermented Fruits and Vegetables: Bioactive Components and Effects on Human Health.

Annu Rev Food Sci Technol

January 2025

1Department of Food Science and Technology, University of California, Davis, Davis, California, USA; email:

Lacto-fermented fruits and vegetables (FVs) such as kimchi, sauerkraut, and fermented olives and nonalcoholic juices have a long history as dietary staples. Herein, the production steps and microbial ecology of lacto-fermented FVs are discussed alongside findings from human and laboratory studies investigating the health benefits of these foods. Lacto-fermented FVs are enriched in bioactive compounds, including lactic and acetic acids, phenolic compounds, amino acid derivatives such as indole-3-lactic acid, phenyl-lactic acid, γ-aminobutyric acid, and bacteriocins, and beneficial live microbes.

View Article and Find Full Text PDF

Simultaneous Profiling of Multiple Phosphorylated Metabolites in Typical Biological Matrices via Ion-Pair Reversed-Phase Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry.

Anal Chem

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.

Simultaneous analysis of multiple phosphorylated metabolites (phosphorylated metabolome) in biological samples is vital to reveal their physiological and pathophysiological functions, which is extremely challenging due to their low abundance in some biological matrices, high hydrophilicity, and poor chromatographic behavior. Here, we developed a new method with ion-pair reversed-phase ultrahigh-performance liquid chromatography and mass spectrometry using BEH C18 columns modified with hybrid surface technology. This method demonstrated good performances for various phosphorylated metabolites, including phosphorylated sugars and amino acids, nucleotides, NAD-based cofactors, and acyl-CoAs in a single run using standard LC systems.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

In recent years, alternative enzymes with varied specificities have gained importance in MS-based bottom-up proteomics, offering orthogonal information about biological samples and advantages in certain applications. However, most mass spectrometric workflows are optimized for tryptic digests. This raises the questions of whether enzyme specificity impacts mass spectrometry and if current methods for nontryptic digests are suboptimal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!