Six cyclometalated iridium(iii) complexes bearing different numbers of fluorine atoms were synthesized. These complexes demonstrated much better anti-proliferation activities towards five tumour cell lines than the widely used clinical chemotherapeutic agent cisplatin. Moreover, the anti-proliferation activities were correlated to the number of substituted fluorine atoms. Colocalization and inductively coupled plasma-mass spectrometry (ICP-MS) indicated that this series of complexes could penetrate cell membranes rapidly and preferentially target mitochondria. Manifesting high selectivity between tumour cells and normal cells and remarkable sensitivity to a cisplatin-resistant cell line (A549R), complex Ir6 was successfully developed as a novel anticancer agent (with IC values of 0.5 ± 0.1 μM for HeLa, 1.1 ± 0.2 μM for HepG2, 1.5 ± 0.3 μM for BEL-7402, 0.8 ± 0.1 μM for A549, and 0.7 ± 0.2 μM for A549R cell lines). Further mechanism studies including mitochondrial membrane potential depolarization and caspase 3/7 activation revealed that Ir6 induced apoptosis via mitochondrial pathways. These results demonstrated that complex Ir6 might be a promising candidate as a mitochondria-targeted theranostic anticancer agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7dt01043e | DOI Listing |
Chemistry
December 2024
Waseda University: Waseda Daigaku, Department of Chemistry and Biochemistry, 169-8555, Tokyo, JAPAN.
Single compounds displaying a wide range of luminescent colors are attractive optical materials for sensor applications. In this study, we present the beneficial combination of a cyclometalated iridium(III) complex scaffold and boronic acid units for designing stimuli-responsive luminescent materials with various emission colors. Five iridium(III) complexes bearing a diboronic acid ligand (bpyB2) were synthesized: Ir(C^N)bpyB2 (C^N = 2-phenylpyridine (1), 2-(2,4-difluorophenyl)pyridine (2), 2-(4-methoxyphenyl)pyridine (3), benzo[h]quinoline (4), 1-phenylisoquinoline (5)).
View Article and Find Full Text PDFInorg Chem
December 2024
Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
This paper provides extensive studies of [IrCl(Ph-py)(morph-CH-terpy-κN)]PF (), [Ir(Ph-py)(morph-CH-terpy-κN)]PF (), [IrCl(Ph-py)(Ph-terpy-κN)]PF (), and [Ir(Ph-py)(Ph-terpy-κN)]PF () designed to demonstrate the possibility of controlling the photophysical properties of mono- and bis-cyclometalated complexes [IrCl(Ph-py)(R-CH-terpy-κN)]PF and [Ir(Ph-py)(R-CH-terpy-κN)]PF through a remote electron-donating substituent introduced into the 4'-position of 2,2':6',2″-terpyridine (terpy) via the phenyl linker. The attachment of the morpholinyl (morph) group was evidenced to induce dramatic changes in the emission characteristics of the monocyclometalated Ir(III) systems with coordinated R-CH-terpy ligand (κN). In solution, the obtained complex [IrCl(Ph-py)(morph-CH-terpy-κN)]PF was found to be a rare example of dual-emissive Ir(III) systems.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
Myeloid cell leukemia-1 (Mcl-1) is an antiapoptotic oncoprotein overexpressed in several malignancies and acts as one of the promising therapeutic targets for cancer. Even though there are several small molecule based Mcl-1 inhibitors reported, the delivery of Mcl-1 inhibitor at the target site is quite challenging. In this regard, we developed a series of mitochondria targeting luminescent cyclometalated iridium(III) prodrugs bearing Mcl-1 inhibitors via ester linkage due to the presence of Mcl-1 protein in the outer mitochondrial membrane.
View Article and Find Full Text PDFChemistry
November 2024
Department of Chemistry, University of Calcutta, 92-APC Road, Kolkata, 700009.
Cyclometalation offers a wide number of organometallic metallacycles showing diverse applications. However, such NHC complexes synthesized via an sp C-H bond activation are rare. An iridium(III) complex with a chiral mesoionic N-heterocyclic carbene (MIC) ligand, where the Ir forms an additional Ir-C bond via a regiospecific sp C-H bond activation at the N-methylbenzyl wingtip, was synthesized and characterized.
View Article and Find Full Text PDFInorg Chem
December 2024
The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia.
A series of electrochemiluminescent (ECL) iridium(III) complexes with the general formula [Ir(CN)(pim)] (where CN = cyclometalating ligands 2-phenylpyridinato (ppy) or 2-(2,4-difluorophenyl)pyridinato (dFppy), and pim = 2-(2-pyridyl)imidazole) have been synthesized. In each case, the 2-(2-pyridyl)imidazole ancillary ligand has been modified to facilitate bioconjugation and ECL label development. All complexes exhibit blue-shifted optical and electro-generated phosphorescence relative to the archetypal complex [Ir(ppy)(bpy)] (bpy = 2,2'-bipyridine).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!