Electrospinning is a well-known technique for the preparation of scaffolds for biomedical applications. In this work, a continuous electrospinning method for gel fiber preparation is presented without a spinning window. As proof of concept, the preparation of poly(aspartic acid)-based hydrogel fibers and their properties are described by using poly(succinimide) as shell polymer and 2,2,4(2,4,4)-trimethyl-1,6-hexanediamine as cross-linker in the core of the nozzle. Cross-linking takes place as the two solutions get in contact at the tip of the nozzle. The impact of solution concentrations and feeding rates on fiber morphology, proof of the presence of cross-links as well as pH sensitivity after the transformation of the poly(succinimide)-based material to poly(aspartic acid) is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201700147 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!