Renal cell carcinoma (RCC) is the most common neoplasm of the kidney in adults, accounting for ~3% of adult malignancies. Understanding the underlying mechanism of RCC tumorigenesis is necessary to improve patient survival. The present study revealed that Taxol‑induced microtubule (MT) polymerization causes cell cycle arrest and an increase in guanosine triphosphate‑Ras homology gene family, member A (GTP‑RhoA) protein expression. Disruption of Taxol‑induced MT polymerization reversed GTP‑RhoA expression and cell cycle arrest. The localization and redistribution of MTs and RhoA were consistent in cells with MT bundles and those without. Decreased GTP‑RhoA had no marked effect on Taxol‑induced MT bundling, however, it reduced the proportion of cells in G2/M phase. Taken together, Taxol‑induced MT polymerization regulated the protein expression levels of GTP‑RhoA and cell cycle arrest. However, the alteration in GTP‑RhoA expression did not influence MT arrangement, suggesting that GTP‑RhoA serves a pivotal role in Taxol‑induced MT polymerization and cell cycle arrest in RCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436224PMC
http://dx.doi.org/10.3892/mmr.2017.6543DOI Listing

Publication Analysis

Top Keywords

cell cycle
20
cycle arrest
20
taxol‑induced polymerization
12
taxol‑induced microtubule
8
microtubule polymerization
8
renal cell
8
cell carcinoma
8
polymerization cell
8
protein expression
8
gtp‑rhoa expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!