Bortezomib, a first‑in‑class proteasome inhibitor, is a standard method of treatment in multiple myeloma. In the present study, the therapeutic effect of bortezomib was evaluated in an ulcerative colitis model induced by dextran sulfate sodium (DSS) in mice, and the mechanism of action was also investigated. Mice were administered with 3% DSS drinking water for 7 consecutive days and then they were intraperitoneally treated with bortezomib (0.2, 0.6 or 1 mg/kg) for 1, 3 or 7 days. Mice in the control group and the DSS group were provided the same volume of PBS, respectively. Body weight, stool characteristics and hematochezia were observed. Serum levels of tumor necrosis factor‑α (TNF‑α), C‑reactive protein (CRP), albumin (ALB) and colonic activity of superoxide dismutase (SOD) were evaluated using specific kits. The expression of the transcription factor nuclear factor‑κB (NF‑κB) p65 gene and the DNA‑binding activity of NF‑κB protein were also evaluated. Administration of bortezomib attenuates colonic inflammation in mice. After 3 or 7 days of treatment, Disease Activity Index (DAI) as well as histological scores and NF‑κB p65 protein expression were significantly reduced in mice treated with bortezomib at a dose of 0.6 or 1 mg/kg/day. Furthermore, it was also revealed that bortezomib was able to reduce serum levels of CRP and TNF‑α caused by DSS and increase the level of ALB in serum and the activity of SOD in colonic tissues. These results demonstrated that bortezomib exerts a protective effect on DSS‑induced colitis, and its underlying mechanisms are associated with the NF‑κB gene inhibition that mitigates colon inflammatory responses in intestinal epithelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436237PMC
http://dx.doi.org/10.3892/mmr.2017.6524DOI Listing

Publication Analysis

Top Keywords

bortezomib
8
dextran sulfate
8
ulcerative colitis
8
treated bortezomib
8
serum levels
8
nf‑κb p65
8
mice
6
bortezomib protects
4
protects dextran
4
sulfate sodium‑induced
4

Similar Publications

Decreased STING predicts adverse efficacy in bortezomib regimens and poor survival in multiple myeloma.

Clin Exp Med

January 2025

Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Purpose: STING (stimulator of interferon genes) is involved in viral and bacterial defense through interferon pathway and innate immunity. Increased susceptibility to infection is a common manifestation of multiple myeloma (MM). Thus, we aimed to explore the clinical significance and possible mechanism of STING in MM.

View Article and Find Full Text PDF

A predictive model for long-term survival is needed, and mitochondrial dysfunction is a key feature of cancer metabolism, though its link to glioma is not well understood. The aim of this study was to identify the molecular characteristics associated with glioma prognosis and explore its potential function. We analyzed RNA-seq data from The Cancer Genome Atlas and identified differentially expressed mitochondrial long noncoding RNAs (lncRNAs) using R's 'limma' package.

View Article and Find Full Text PDF

Purpose: Despite advances in the treatment of adult acute lymphoblastic leukemia (ALL), relapse remains the most significant challenge in improving prognosis. Measurable residual disease (MRD) assessment can predict bone marrow relapse based on MRD positivity. As access to innovative therapies remains limited because of the high cost, chemotherapy is the widely utilized treatment option.

View Article and Find Full Text PDF

Multiple myeloma (MM) is the second most common hematological malignancy. Previous studies have validated the prognostic significance of the platelet-to-lymphocyte ratio (PLR) in patients with certain solid tumors. However, the relationship between the PLR and prognosis in myeloma patients has not been clearly demonstrated.

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!