We extend the multiscale spatiotemporal heat map strategies originally developed for interpreting molecular dynamics simulations of well-structured proteins to liquids such as lipid bilayers and solvents. Our analysis informs the experimental and theoretical investigation of electroporation, that is, the externally imposed breaching of the cell membrane under the influence of an electric field of sufficient magnitude. To understand the nanoscale architecture of electroporation, we transform time domain data of the coarse-grained interaction networks of lipids and solvents into spatial heat maps of the most relevant constituent molecules. The application takes advantage of our earlier graph-based activity functions by accounting for the contact-forming and -breaking activity of the lipids in the bilayer. Our novel analysis of lipid interaction networks under periodic boundary conditions shows that the disruption of the bilayer, as measured by the breaking activity, is associated with the externally imposed pore formation. Moreover, the breaking activity can be used for statistically ranking the importance of individual lipids and solvent molecules through a bridging between fast and slow degrees of freedom. The heat map approach highlighted a small number of important lipids and solvent molecules, which allowed us to efficiently search the trajectories for any functionally relevant mechanisms. Our algorithms are freely disseminated with the open-source package .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404627 | PMC |
http://dx.doi.org/10.3389/fmolb.2017.00022 | DOI Listing |
Environ Monit Assess
January 2025
Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04001, Košice, Slovak Republic.
In recent decades, global climate change and rapid urbanization have aggravated the urban heat island (UHI) effect, affecting the well-being of urban citizens. Although this significant phenomenon is more pronounced in larger metropolitan areas due to extensive impervious surfaces, small- and medium-sized cities also experience UHI effects, yet research on UHI in these cities is rare, emphasizing the importance of land surface temperature (LST) as a key parameter for studying UHI dynamics. Therefore, this paper focuses on the evaluation of LST and land cover (LC) changes in the city of Prešov, Slovakia, a typical medium-sized European city that has recently undergone significant LC changes.
View Article and Find Full Text PDFSci Rep
January 2025
Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi, Japan.
Event-based surveillance is crucial for the early detection and rapid response to potential public health risks. In recent years, social networking services (SNS) have been recognized for their potential role in this domain. Previous studies have demonstrated the capacity of SNS posts for the early detection of health crises and affected individuals, including those related to infectious diseases.
View Article and Find Full Text PDFNat Commun
January 2025
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
Plant roots perceive heat stress (HS) and adapt their architecture accordingly, which in turn influence the yield in crops. Investigating their heterogeneity and cell type-specific response to HS is essential for improving crop resilience. Here, we generate single-cell transcriptional landscape of maize (Zea mays) roots in response to HS.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3, Canada.
Monitoring mortality is an essential strategy for fish health management. Commercial marine finfish sites in British Columbia, Canada, are required to report mortality events (MEs) to Fisheries and Oceans Canada (DFO), which makes these data publicly available. This study aimed to analyze the spatial and temporal patterns of ME composition and total MEs.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:
This study delves into the multi-scale temporal and spatial variations of soil heat flux (G) within riparian zones and its correlation with net radiation (Rn) across six riparian woodlands in Shanghai, each characterized by distinct vegetation types. The objective is to assess the complex interrelations between G and Rn, and how these relationships are influenced by varying vegetation and seasons. Over the course of a year, data on G and Rn is collected to investigate their dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!