AI Article Synopsis

Article Abstract

Aim: The overall aim of this study is to evaluate whole genome amplification of DNA extracted from dried blood spot samples. We wish to explore ways of optimizing the amplification process, while decreasing the amount of input material and inherently the cost. Our primary focus of optimization is on the amount of input material, the amplification reaction volume, the number of replicates and amplification time and temperature. Increasing the quality of the amplified DNA and the subsequent results of array genotyping is a secondary aim of this project.

Methods: This study is based on DNA extracted from dried blood spot samples. The extracted DNA was subsequently whole genome amplified using the REPLIg kit and genotyped on the PsychArray BeadChip (assessing > 570,000 SNPs genome wide). We used Genome Studio to evaluate the quality of the genotype data by call rates and log R ratios.

Results: The whole genome amplification process is robust and does not vary between replicates. Altering amplification time, temperature or number of replicates did not affect our results. We found that spot size i.e. amount of input material could be reduced without compromising the quality of the array genotyping data. We also showed that whole genome amplification reaction volumes can be reduced by a factor of 4, without compromising the DNA quality.

Discussion: Whole genome amplified DNA samples from dried blood spots is well suited for array genotyping and produces robust and reliable genotype data. However, the amplification process introduces additional noise to the data, making detection of structural variants such as copy number variants difficult. With this study, we explore ways of optimizing the amplification protocol in order to reduce noise and increase data quality. We found, that the amplification process was very robust, and that changes in amplification time or temperature did not alter the genotyping calls or quality of the array data. Adding additional replicates of each sample also lead to insignificant changes in the array data. Thus, the amount of noise introduced by the amplification process was consistent regardless of changes made to the amplification protocol. We also explored ways of decreasing material expenditure by reducing the spot size or the amplification reaction volume. The reduction did not affect the quality of the genotyping data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408502PMC
http://dx.doi.org/10.1016/j.ymgmr.2017.04.002DOI Listing

Publication Analysis

Top Keywords

amplification process
20
amplification
14
genome amplified
12
amplified dna
12
genome amplification
12
dried blood
12
amount input
12
input material
12
amplification reaction
12
amplification time
12

Similar Publications

Multi-dimensional bio mass cytometry: simultaneous analysis of cytoplasmic proteins and metabolites on single cells.

Chem Sci

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Single-cell multi-dimensional analysis enables more profound biological insight, providing a comprehensive understanding of cell physiological processes. Due to limited cellular contents, the lack of protein and metabolite amplification ability, and the complex cytoplasmic environment, the simultaneous analysis of intracellular proteins and metabolites remains challenging. Herein, we proposed a multi-dimensional bio mass cytometry platform characterized by protein signal conversion and amplification through an orthogonal exogenous enzymatic reaction.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations.

View Article and Find Full Text PDF

Purpose: To evaluate diagnostic performance of four diagnostic methods for rapid determination of methicillin resistance in S. aureus positive blood cultures (BCs).

Methods: Clinical and spiked BCs were subjected to the evaluation of the following methods and protocols: a.

View Article and Find Full Text PDF

Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato.

View Article and Find Full Text PDF

Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!