We investigate the growth, purity, grain structure/morphology, and electrical resistivity of 3D platinum nanowires synthesized via electron beam induced deposition with and without an in situ pulsed laser assist process which photothermally couples to the growing Pt-C deposits. Notably, we demonstrate: 1) higher platinum concentration and a coalescence of the otherwise Pt-C nanogranular material, 2) a slight enhancement in the deposit resolution and 3) a 100-fold improvement in the conductivity of suspended nanowires grown with the in situ photothermal assist process, while retaining a high degree of shape fidelity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389181PMC
http://dx.doi.org/10.3762/bjnano.8.83DOI Listing

Publication Analysis

Top Keywords

electron beam
8
beam induced
8
induced deposition
8
electrical resistivity
8
assist process
8
nanoprinting laser-assisted
4
laser-assisted electron
4
deposition growth
4
growth kinetics
4
kinetics enhanced
4

Similar Publications

Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.

Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.

View Article and Find Full Text PDF

For the purpose of assessing image quality and calculating patient X-ray dosage in radiology, computed tomography (CT), fluoroscopy, mammography, and other fields, it is necessary to have prior knowledge of the X-ray energy spectrum. The main components of an X-ray tube are an electron filament, also known as the cathode, and an anode, which is often made of tungsten or rubidium and angled at a certain angle. At the point where the electrons generated by the cathode and the anode make contact, a spectrum of X-rays with energies spanning from zero to the maximum energy value of the released electrons is created.

View Article and Find Full Text PDF

Influence of Photoemission Geometry on Timing and Efficiency in 4D Ultrafast Electron Microscopy.

Chemphyschem

January 2025

University of Minnesota Twin Cities, Chemical Engineering and Materials Science, 421 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.

Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still-high barrier to entry, the full range of capabilities of laser-driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off-axis photoemission geometries in a UEM equipped with a thermionic-emission gun.

View Article and Find Full Text PDF

Atom probe tomography (APT) enables three-dimensional chemical mapping with near-atomic scale resolution. However, this method requires precise sample preparation, which is typically achieved using a focused ion beam (FIB) microscope. As the ion beam induces some degree of damage to the sample, it is necessary to apply a protective layer over the region of interest (ROI).

View Article and Find Full Text PDF

The challenge of imaging low-density objects in an electron microscope without causing beam damage is significant in modern transmission electron microscopy. This is especially true for life science imaging, where the sample, rather than the instrument, still determines the resolution limit. Here, we explore whether we have to accept this or can progress further in this area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!