We take advantage of a recent breakthrough in the synthesis of α,β-unfunctionalised 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) moieties, which we symmetrically conjugate with oligothienyls in an unexpectedly stable form, and produce a "metal-free" A-D-A (acceptor-donor-acceptor) oligomer emitting in the near-infrared (NIR) thanks to delocalisation of the BODIPY low-lying lowest unoccupied molecular orbital (LUMO) over the oligothienyl moieties, as confirmed by density functional theory (DFT). We are able to retain a PL efficiency of 20% in the solid state (vs. 30% in dilute solutions) by incorporating such a dye in a wider gap polyfluorene matrix and demonstrate organic light-emitting diodes (OLEDs) emitting at 720 nm. We achieve external quantum efficiencies (EQEs) up to 1.1%, the highest value achieved so far by a "metal-free" NIR-OLED not intentionally benefitting from triplet-triplet annihilation. Our work demonstrates for the first time the promise of A-D-A type dyes for NIR OLEDs applications thereby paving the way for further optimisation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431651PMC
http://dx.doi.org/10.1038/s41598-017-01785-2DOI Listing

Publication Analysis

Top Keywords

organic light-emitting
8
light-emitting diodes
8
highly efficient
4
efficient solid-state
4
solid-state near-infrared
4
near-infrared organic
4
diodes incorporating
4
incorporating a-d-a
4
a-d-a dyes
4
dyes based
4

Similar Publications

Fully π-conjugated polymers consisting of plane and rigid aromatic units present a fantastic optoelectronic property, a promising candidate for printed and flexible optoelectronic devices. However, obtaining high-performance conjugated polymers with an excellent intrinsically flexible and printable capacity is a great challenge due to their inherent coffee-ring effect and brittle properties. Here, we report an asymmetric substitution strategy to improve the printable and stretchable properties of deep-blue light-emitting conjugated polymers with a strong inter-aggregate capillary interaction for flexible printed polymer light-emitting diodes.

View Article and Find Full Text PDF

Sulfur-locked multiple resonance emitters for high performance orange-red/deep-red OLEDs.

Nat Commun

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are preferred for their high efficiency and high colour purity in organic light-emitting diodes (OLEDs). However, the design strategies of MR-TADF emitters in the red region are very limited. Herein, we propose a concept for a paradigm shift in orange-red/deep-red MR emitters by linking the outer phenyl groups in a classical MR framework through intramolecular sulfur (S) locks.

View Article and Find Full Text PDF

An Efficient Ultra-Narrowband Yellow Emitter Based on a Double-Boron-Embedded Tetraazacyclophane.

Angew Chem Int Ed Engl

January 2025

Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, CHINA.

Ultra-narrowband and highly modifiable multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are crucial for realizing high-performance wide-color-gamut display applications. Despite progress, most MR-TADF emitters remain confined to blue and green wavelengths, with difficulties extending into longer wavelengths without significant spectral broadening, which compromises color purity in full-color organic light-emitting diode (OLED) displays. In this work, we present a novel tetraazacyclophane-based architecture embedding dual boron atoms to remarkedly enhance intramolecular charge transfer through the strategic positioning of boron and nitrogen atoms.

View Article and Find Full Text PDF

Organic multilayer systems, which are stacked layers of different organic materials, are used in various organic electronic devices such as organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). In particular, OFETs are promising as key components in flexible electronic devices. In this study, we investigated how the inclusion of an insulating tetratetracontane (TTC) interlayer in ambipolar indigo-based OFETs can be used to alter the crystallinity and electrical properties of the indigo charge transport layer.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) phosphor-converted light-emitting diode (LED) technology holds promise for advancing broadband light sources. Despite the potential, limited research has delved into the energy transfer mechanism from sharp-line to broadband emission in SWIR phosphors, which remains underexplored. Herein, we demonstrate bright SWIR phosphors achieved through Cr/Ni energy transfer in LiGaAl O.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!