Intraplaque and Cellular Distribution of Dextran-Coated Iron Oxide Fluorescently Labeled Nanoparticles: Insights Into Atherothrombosis and Plaque Rupture.

Circ Cardiovasc Imaging

From the Translational and Molecular Imaging Institute (C.C., Z.A.F.) and Department of Radiology (C.C., Z.A.F.), Icahn School of Medicine at Mount Sinai, New York, NY.

Published: May 2017

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494995PMC
http://dx.doi.org/10.1161/CIRCIMAGING.117.006533DOI Listing

Publication Analysis

Top Keywords

intraplaque cellular
4
cellular distribution
4
distribution dextran-coated
4
dextran-coated iron
4
iron oxide
4
oxide fluorescently
4
fluorescently labeled
4
labeled nanoparticles
4
nanoparticles insights
4
insights atherothrombosis
4

Similar Publications

Effect of Monosodium Urate Crystal Deposition on Atherosclerotic Carotid Plaques.

J Clin Med

January 2025

Departments of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.

The accumulation of uric acid in arteriosclerotic plaques has recently attracted attention. Because the interaction between hyperuricemia and atherosclerosis is complex, the details remain obscure. We aimed to elucidate the clinical effect of monosodium urate monohydrate (MSU) deposition on carotid plaques.

View Article and Find Full Text PDF

Carotid artery atherosclerotic stenosis is an important annual cause of stroke in the United States. Moreover, the incidence of carotid artery stenosis is significantly increasing due to the widespread popularity of high fat and high salt diets, sedentary lifestyles, and the increasing age of the population. Of major importance to cardiovascular specialists is the fact that individuals with atherosclerotic carotid artery stenosis can have a prevalence of atherosclerotic coronary artery disease as high as 50 to 75%.

View Article and Find Full Text PDF

Aims: Diabetes mellitus (DM) induces increased inflammation of atherosclerotic plaques, resulting in elevated plaque instability. Mesenchymal stem cell (MSC) therapy was shown to decrease plaque size and increase stability in non-DM animal models. We now studied the effect of MSC therapy in a streptozotocin-induced hyperglycaemia mouse model using a clinically relevant dose of adipose tissue-derived MSCs (ASCs).

View Article and Find Full Text PDF

Melatonin stabilizes atherosclerotic plaques: an association that should be clinically exploited.

Front Med (Lausanne)

December 2024

CENECON, Faculty of Medical Sciences, Universidad de Buenos Aires, and Pontificia Universidad Catolica Argentina, Buenos Aires, Argentina.

Atherosclerosis is the underlying factor in the premature death of millions of humans annually. The cause of death is often a result of the rupture of an atherosclerotic plaque followed by the discharge of the associated molecular debris into the vessel lumen which occludes the artery leading to ischemia of downstream tissue and to morbidity or mortality of the individual. This is most serious when it occurs in the heart (heart attack) or brain (stroke).

View Article and Find Full Text PDF

Plaque rupture in atherosclerosis (AS) is a major cause of acute cardiovascular events. Macrophage-induced inflammatory responses and accumulation of excess reactive oxygen species (ROS) primarily induce unstable plaques. Therefore, targeting ROS clearance and functional modulation of macrophages are clinically crucial for improving plaque stability and inhibiting AS progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!