Background: There is growing evidence of the involvement of the kynurenine metabolic pathway and the enhancement of kynurenic acid production in the neuroprotective effects of the ketogenic diet.

Objective: Here, we review evidence implicating kynurenic acid in the efficacy of ketogenic diet in eye diseases associated with neurodegeneration.

Findings: Ketogenic diet and ketone bodies that are elevated during exposure to the ketogenic diet each have a neuroprotective effect on retinal ganglion cells in a rat model of Nmethyl- D-aspartate induced neuronal damage. Chronic exposure to ketogenic diet also increases kynurenic acid concentrations in discrete rat brain structures. A non-selective glutamate receptor agonist, glutamate, also decreases the production of kynurenic acid in bovine retinal slices; this effect is attenuated by acetoacetate and β-hydroxybutyrate, two of three ketone bodies overproduced during ketogenic diet.

Perspective: Whether ketogenic diet induced enhancement of kynurenic acid production would translate into a clinically significant improvement in certain eye diseases like glaucoma and retinal neurodegenerations awaits further experimental and clinical verification.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867324666170509120257DOI Listing

Publication Analysis

Top Keywords

kynurenic acid
24
ketogenic diet
24
ketogenic
8
diet eye
8
enhancement kynurenic
8
acid production
8
eye diseases
8
ketone bodies
8
exposure ketogenic
8
kynurenic
6

Similar Publications

Tryptophan (TRP) is an essential amino acid crucial for the production of many bioactive compounds. Disturbances in TRP metabolism have been revealed in various diseases, many of which are closely related to the immune system. In recent years, we have focused on finding blood-based biomarkers of successful immunotherapy in cancer.

View Article and Find Full Text PDF

The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.

View Article and Find Full Text PDF

Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.

View Article and Find Full Text PDF

Methamphetamine (METH) abuse disrupts the homeostasis of neurotransmitter (NT) metabolism, contributing to a wide range of neurological and psychological disorders. However, the specific effects of METH on NT metabolism, particularly for the tryptophan (TRP) and tyrosine (TYR) metabolic pathways, remain poorly understood. In this study, serum samples from 78 METH abusers and 79 healthy controls were analyzed using Ultra-High-Performance Liquid Chromatography with Tandem Mass Spectrometry (UHPLC-MS/MS).

View Article and Find Full Text PDF

: Parkinson's disease (PD) is a neurodegenerative disorder characterised by a high prevalence of sporadic cases. Various molecular mechanisms are involved in its pathogenesis. This pilot study aimed to identify potential risk and protective human leukocyte antigen (HLA) alleles in PD, discover candidate alleles for further research, and evaluate potential blood biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!