Stromal SPOCK1 supports invasive pancreatic cancer growth.

Mol Oncol

Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, The Netherlands.

Published: August 2017

Pancreatic ductal adenocarcinoma (PDAC) is marked by an abundant stromal deposition. This stroma is suspected to harbor both tumor-promoting and tumor-suppressing properties. This is underscored by the disappointing results of stroma targeting in clinical studies. Given the complexity of tumor-stroma interaction in PDAC, there is a need to identify the stromal proteins that are predominantly tumor-promoting. One possible candidate is SPOCK1 that we previously identified in a screening effort in PDAC. We extensively mined PDAC gene expression datasets, and used species-specific transcript analysis in mixed-species models for PDAC to study the patterns and driver mechanisms of SPOCK1 expression in PDAC. Advanced organotypic coculture models with primary patient-derived tumor cells were used to further characterize the function of this protein. We found SPOCK1 expression to be predominantly stromal. Expression of SPOCK1 was associated with poor disease outcome. Coculture and ligand stimulation experiments revealed that SPOCK1 is expressed in response to tumor cell-derived transforming growth factor-beta. Functional assessment in cocultures demonstrated that SPOCK1 strongly affects the composition of the extracellular collagen matrix and by doing so, enables invasive tumor cell growth in PDAC. By defining the expression pattern and functional properties of SPOCK1 in pancreatic cancer, we have identified a stromal mediator of extracellular matrix remodeling that indirectly affects the aggressive behavior of PDAC cells. The recognition that stromal proteins actively contribute to the protumorigenic remodeling of the tumor microenvironment should aid the design of future clinical studies to target specific stromal targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537700PMC
http://dx.doi.org/10.1002/1878-0261.12073DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
8
pdac
8
clinical studies
8
stromal proteins
8
spock1 expression
8
stromal
7
spock1
7
expression
5
stromal spock1
4
spock1 supports
4

Similar Publications

Mina53 catalyzes arginine demethylation of p53 to promote tumor growth.

Cell Rep

January 2025

Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China. Electronic address:

Arginine methylation is a common post-translational modification that plays critical roles in many biological processes. However, the existence of arginine demethylases that remove the modification has not been fully established. Here, we report that Myc-induced nuclear antigen 53 (Mina53), a member of the jumonji C (JmjC) protein family, is an arginine demethylase.

View Article and Find Full Text PDF

Introduction: Prostate cancer (PCa) is the commonest urologic cancer worldwide and the leading cause of male cancer deaths in Nigeria. In Nigeria, orchidectomy remains the primary androgen deprivation therapy. Dihydrotestosterone (DHT) is the active prostatic androgen, but its relationship with PCa severity has not been extensively studied in Africa.

View Article and Find Full Text PDF

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

Extracellular vesicles from pancreatic cancer and its tumour microenvironment promote increased Schwann cell migration.

Br J Cancer

January 2025

Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI.

View Article and Find Full Text PDF

A safe haven for cancer cells: tumor plus stroma control by DYRK1B.

Oncogene

January 2025

Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.

The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!