Rhodium(III)-Catalyzed C-H Activation/Heterocyclization as a Macrocyclization Strategy. Synthesis of Macrocyclic Pyridones.

Org Lett

Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS (UMR8231), PSL Research University, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

Published: May 2017

Structurally diverse macrocyclic pyridones can be efficiently synthesized by a rhodium(III)-catalyzed C-H activation/heterocyclization of ω-alkynyl α-substituted acrylic hydroxamates. The use of a O-pivaloyl hydroxamate as directing group was crucial to achieve efficient catalyst turnover in a redox-neutral process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.7b01051DOI Listing

Publication Analysis

Top Keywords

rhodiumiii-catalyzed c-h
8
c-h activation/heterocyclization
8
macrocyclic pyridones
8
activation/heterocyclization macrocyclization
4
macrocyclization strategy
4
strategy synthesis
4
synthesis macrocyclic
4
pyridones structurally
4
structurally diverse
4
diverse macrocyclic
4

Similar Publications

Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis.

Chem Commun (Camb)

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization.

View Article and Find Full Text PDF

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.

View Article and Find Full Text PDF

Rh(III)-Catalyzed [4 + 2] Annulation and Dehydrogenative Annulation of -Chloroimines with Maleimides.

J Org Chem

January 2025

Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.

We herein report a Rh(III)-catalyzed C-H bond coupling of -chloroimines with maleimides, in which the [4 + 2] annulation and dehydrogenative annulation processes can be selectively achieved by simply adjusting the reaction conditions. This protocol is compatible with various functional groups, shows exquisite selectivity, and presents a concise synthetic procedure to respective products in moderate to good yields. With all these merits, this strategy may be applicable in the construction of related azaheterocyclic skeletons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!