Lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical energy density in comparison to conventional state-of-the-art lithium-ion batteries. However, low sulfur mass loading in the cathode results in low areal capacity and impedes the practical use of Li-S cells. Inspired by wood, a cathode architecture with natural, three-dimensionally (3D) aligned microchannels filled with reduced graphene oxide (RGO) were developed as an ideal structure for high sulfur mass loading. Compared with other carbon materials, the 3D porous carbon matrix has several advantages including low tortuosity, high electrical conductivity, and good structural stability, which make it an excellent 3D lightweight current collector. The Li-S battery assembled with the wood-based sulfur electrode can deliver a high areal capacity of 15.2 mAh cm with a sulfur mass loading of 21.3 mg cm. This work provides a facile but effective strategy to develop 3D porous electrodes for Li-S batteries, which can also be applied to other cathode materials to achieve a high areal capacity with uncompromised rate and cycling performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.7b01172 | DOI Listing |
Pharmaceutics
January 2025
BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
: Although donepezil, a reversible acetylcholinesterase inhibitor, has been in use since 1996, its metabolic characteristics remain poorly characterized. Therefore, this study aims to investigate the in vivo metabolism of donepezil using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based on a molecular networking (MN) approach integrated with a non-targeted metabolomics approach. : After the oral administration of donepezil (30 mg/kg) in rats, urine, feces, and liver samples were collected for LC-HRMS analysis.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, Minnesota 55108, United States.
Volatile off-notes in ground pennycress seeds, ground defatted pennycress seed, and the final protein isolates (produced from the defatted seeds by alkaline or salt extraction) were identified and "quantified" relative to an internal standard. Volatiles contributing off-notes were identified based on mass spectra, retention indices, and aroma descriptors. The compounds that produced the strongest odors based on gas chromatography:olfactometry were identified as potential aroma impact compounds.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Tecnológico Nacional de México Campus Tuxtla, Carretera Panamericana Km 1080, Tuxtla Gutiérrez C.P. 29050, Mexico.
This study provides a comprehensive structural, chemical, and optical characterization of CZTS thin films deposited on flexible Kapton substrates via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The investigation explored the effects of varying deposition cycles (40, 60, 70, and 80) and annealing treatments on the films. An X-ray diffraction (XRD) analysis demonstrated enhanced crystallinity and phase purity, particularly in films deposited with 70 cycles.
View Article and Find Full Text PDFCommun Chem
January 2025
Dipartimento di Scienze Della Terra, Università Degli Studi di Milano, via Mangiagalli 34, I-20133, Milano, Italy.
Validating thermodynamic models is essential in experimental geosciences for exploring increasingly complex systems and developing analytical protocols. However, investigating solid-fluid equilibria in mm-sized experimental capsules poses several challenges, particularly in sulfur-bearing chemical systems. These include maintaining bulk fluid composition and performing quantitative analysis with extremely low amounts of synthesized fluid.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria.
As global demand for fossil fuels rises amidst depleting reserves and environmental concerns, exploring sustainable and renewable energy sources has become imperative. This study investigated the pyrolysis of corncob, a widely available agricultural waste, using urea as a catalyst to enhance bio-oil production. The aim was to determine the optimum urea concentration and pyrolysis temperature for bio-oil yield from corncob.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!