It is a trend to substitute bioplastics for petroleum-based plastics in food packaging. Glycerol-plasticized soy protein isolate (SPI) is promising as a replacement for traditional petroleum-based plastics. Hydrogen bonding (H-bonding) plays a key role in plasticization of SPI film. However, few publications are concerned with the interactions of SPI and glycerol at the molecular level. In this paper, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy was applied to investigate the effect of H-bonding on the secondary structures of glycerol-plasticized SPI films and thus on the plasticization. An "S" profile of the H-bonding between SPI and glycerol with an abrupt jump in the glycerol range of 10-30% was achieved. For more in-depth investigation of the H-bonding, two-dimensional correlation spectroscopy (2D-COS) and perturbation-correlation moving-window two-dimensional (PCMW2D) analyses were applied to the amide I and II bands of SPI films spectra series. The conformation change sequences under the effect of H-bonding were revealed. When glycerol was involved, it entered into the β-sheet and the H-bonds of the SPI peptide backbone (C = O···H-N-) were replaced by the new H-bonds between SPI and glycerol (C = O···H-O-). The transformations of parallel β-sheet to β-turn in the range of 0-20% and anti-parallel β-sheet to β-turn in the range of 20-35% were obtained. In the 35-60% concentration range, the β-sheet was first changed to a transition state conformation, then together with the β-turn, to the random coil. The 2D-COS results clearly suggest that the conformations of SPI gradually change from the ordered to the less ordered and disordered, which significantly improve the plasticity of SPI film.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0003702817710249DOI Listing

Publication Analysis

Top Keywords

spi glycerol
12
spi
10
soy protein
8
protein isolate
8
hydrogen bonding
8
two-dimensional correlation
8
attenuated total
8
total reflection
8
reflection fourier
8
fourier transform
8

Similar Publications

Effect of fibrillation on the film-forming properties of soy protein isolate: Relationship between protein structural changes and the film-forming properties.

Food Chem

December 2024

College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China. Electronic address:

Protein fibrillation has great potential for enhancing the emulsification, foaming, and gelling properties of proteins. However, its effects on protein film-forming properties are less well understood. In this study, soy protein isolate (SPI) was subjected to fibrillation at pH 2.

View Article and Find Full Text PDF

Film-forming modifications and mechanistic studies of soybean protein isolate by glycerol plasticization and thermal denaturation: A molecular interaction perspective.

Food Res Int

November 2024

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China; Seed Station of Xining City, Xining 810016, China. Electronic address:

Plasticizer and thermal denaturation are indeed important factors for soybean protein film formation. The objective of the study was to investigate the effects of glycerol and thermal denaturation on the film-forming performances of soybean protein isolate (SPI) and elucidate the underlying mechanisms. From the results, glycerol had almost no effect on the protein's secondary and tertiary structures.

View Article and Find Full Text PDF

This research aimed to produce eco-friendly straws using soy protein isolate (SPI) and cassava starch (CS) at different ratios by the extrusion technique and by coating with beeswax and shellac wax. Three straw formulations (F) (F1: 24.39% SPI-24.

View Article and Find Full Text PDF

From Soy Waste to Bioplastics: Industrial Proof of Concept.

Biomacromolecules

March 2024

Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.

The global plastic waste problem is pushing for the development of sustainable alternatives, encouraged by stringent regulations combined with increased environmental consciousness. In response, this study presents an industrial-scale proof of concept to produce self-standing, transparent, and flexible bioplastic films, offering a possible solution to plastic pollution and resource valorization. We achieve this by combining amyloid fibrils self-assembled from food waste with methylcellulose and glycerol.

View Article and Find Full Text PDF

A two-step method for preparing smart labels that can monitor food freshness through color change is presented. The conventional casting method for such labels is not cost-effective, as it uses organic solvents and requires additional cutting processes. Our method is more eco-friendly and customizable, as it uses water as the sole solvent and 3D printing as the fabrication technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!